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Abstract

Background: Single-cell DNA sequencing technologies are enabling the study of
mutations and their evolutionary trajectories in cancer. Somatic copy number
aberrations (CNAs) have been implicated in the development and progression of
various types of cancer. A wide array of methods for CNA detection has been
either developed specifically for or adapted to single-cell DNA sequencing data.
Understanding the strengths and limitations that are unique to each of these
methods is very important for obtaining accurate copy number profiles from
single-cell DNA sequencing data.

Results: We benchmarked three widely used methods–Ginkgo, HMMcopy, and
CopyNumber–on simulated as well as real datasets. To facilitate this, we
developed a novel simulator of single-cell genome evolution in the presence of
CNAs. Furthermore, to assess performance on empirical data where the ground
truth is unknown, we introduce a phylogeny-based measure for identifying
potentially erroneous inferences.

Conclusion: While single-cell DNA sequencing is very promising for elucidating
and understanding CNAs, our findings show that even the best existing method
does not exceed 80% accuracy. New methods that significantly improve upon the
accuracy of these three methods are needed. Furthermore, with the large datasets
being generated, the methods must be computationally efficient.

Keywords: Tumor evolution; Intra-tumor heterogeneity; Single-cell DNA
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Background
Acquired mutations are the main causes of cancer [1–3]. Copy number aberrations

(CNAs) are one such type of acquired mutations and have been implicated in over-

regulating oncogenes or down-regulating tumor suppressor genes [4]. Consequently,

accurate detection of CNAs could hold a great promise to understanding some of the

genetic underpinnings of cancer as well as developing targeted drugs. In the past two

decades, a wide array of DNA technologies have been used to detect CNAs, among

which the three most widely used are array Comparative Genomic Hybridization

(aCGH), Next Generation Sequencing (NGS), and single-cell sequencing [5].

Array CGH [6] is a cytogenetic approach that uses fluorescent dyes on the test

(tumor) and reference (normal) samples, and applies them to a microarray, which

is an array of probes. Each probe is a DNA sequence that represents a region of

interest. The size of a probe depends on the DNA sequence being used, and it varies
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from dozens of base pairs, such as oligonucleotides, to thousands of base pairs, such

as bacterial artificial chromosomes. The probes from the paired samples, after be-

ing mixed together, hybridize at each target region. The fluorescence intensities

can then be measured for both samples, and the ratio of the two is used to inform

about CNAs of the test sample relative to the normal one. Array CGH data is ad-

vantageous in comprehensively detecting aneuploidies, amplifications, and deletions

simultaneously. A few computational methods [7–9] have been developed to detect

CNAs using aCGH data. DNAcopy [7] applies a modification of binary segmen-

tation [10] called circular binary segmentation (CBS) to aCGH to overcome data

noise, but it suffers from the problem of outliers [8, 9]. HMMcopy [8] was designed

to ameliorate the problem of outliers and uses a Hidden Markov Model (HMM)

to divide the genome into piecewise fixed segments in order to make inferences on

CNAs. However, since aCGH data is limited in resolution and throughput [11], as

well as suffers from a hybridization bias problem, it is not the optimal technology

to detect CNAs for cancer samples.

Unlike aCGH, which obtains signal on only a limited number of genomic sites

of interest, NGS technology makes it possible to survey the whole genome at a

nucleotide-level resolution by sequencing millions of small fragments (reads) of the

genome in parallel. By aligning the reads to an assembled reference genome, the

reads that cover a position in the genome are counted to obtain the read depth

at that position. Read depths at different regions of the genome can then be con-

trasted to assess hypothesized genomic locations where copy number gains and

losses had occurred. NGS technologies suffer from high false positive rate compared

with aCGH, due mainly to GC bias and the presence of repetitive regions [12, 13].

Even more challenging in the case of cancer genomes that are often aneuploid, con-

tamination of normal cells may occur in the bulk tissue further complicating the

task of estimating the absolute copy number from NGS data. To overcome these

challenges, a plethora of computational tools [12, 14–21] have been developed for

detecting CNAs from NGS data. SeqCNA [12] filters out potentially false-positive

CNAs and corrects GC content for a more accurate CNA detection. CNAseg [14]

analyzes flowcell-to-flowcell variability to avoid false-positive CNAs. CNAnorm [15]

addresses the normal contamination and aneuploidy of the tumor sample to infer

CNAs accurately. Paired-end NGS data provides another modality in addition to

the read depth to infer CNA, and a few bioinformatics tools use this, including, for

example, CNVer [17], CNVnator [18], ReadDepth [19], and Mseq-CNV [20].

Although both aCGH and NGS data can be used to detect CNAs, they do not

provide high-throughput data at the single-cell resolution that is ideal for under-

standing tumor growth. In particular, intratumor heterogeneity [22] is best under-

stood by using data obtained from individual cells within the tumor tissue. Indeed,

in the last ten years, the field has made great strides towards developing technolo-

gies for single-cell DNA sequencing. Data generated by these technologies can be

analyzed to detect CNAs and other types of mutations in individual cells and in-

dividual clones within the heterogeneous tumor [23]. For example, DOP-PCR is

a PCR amplification method that generates low-coverage data suitable for CNA

detection in single-cell data [24–27]. However, it also suffers from uneven coverage

and allelic dropout [23] that could lead to false-positive calls of CNAs. Beyond
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this method, three tools have been extensively applied to single-cell sequencing

data for CNA detection: AneuFinder [28, 29], CopyNumber [30], and Ginkgo [31].

Like HMMcopy, AneuFinder uses a Hidden Markov Model (HMM) to determine

the segmentation of the genome and the absolute copy number of each segment.

CopyNumber [30] pools all the cells together for joint segmentation to improve

boundary detection accuracy. Since cancer cells in the same subclone mostly share

the same CNA boundaries, such a strategy can improve the nucleotide resolution of

the boundary by implicitly amplifying the signal in the data. Ginkgo [31] uses Cir-

cular Binary Segmentation (CBS) [7] to segment the genome, followed by inferring

the integer value of the absolute copy number. It is worth noting that some meth-

ods designed for aCGH and NGS data have also been extensively used on single-cell

data, and this is especially true for HMMcopy [32–36]. As both AneuFinder and

HMMcopy are HMM-based methods, we focus on HMMcopy as a representative

of the HMM-based approach due to its wide application to single-cell sequencing

data in multiple studies [32–36]. However, considering AneuFinder appears later

than HMMcopy, we also benchmark its performance particularly on different ploi-

dies, as from our observation of HMMcopy, correctly inferring the ploidy level is

a challenge to such HMM-based approaches. A more recent method is SCNV [37],

which uses a bin-free segmentation method to do segmentation and copy number

profiling. However, the method has not been widely applied to single-cell DNA

studies. Most recently, Chisel [38] was introduced for detecting CNAs in single-cell

sequencing data. With the help of a matched normal sample or identified normal

single cells, Chisel phases CNAs by germline single nucleotide polymorphisms at a

low coverage, and further infers allele- and haplotype-specific CNAs. Such allele-

and haplotype-specific CNAs can subsequently help improve single-cell clustering

and phylogenetic tree inference. As our study here does not deal with phasing, we

did not include Chisel in our study. Among CopyNumber, Ginkgo, and HMMcopy,

only CopyNumber utilized the pooled information from single-cell data. The other

two methods can be equally well applied to bulk samples. Moreover, HMMcopy was

designed for aCGH data originally, and thus does not take into account the specific

error profiles that characterize single-cell sequencing data, such as low and uneven

coverage, or the computational challenges that arise due to biological processes such

as aneuploidy in a tumor single cell.

In this paper, we compared and benchmarked three methods that have been widely

applied to CNA detection on single-cell DNA cancer data: Ginkgo, HMMcopy, and

CopyNumber. We developed a simulator of cancer genome evolution in the presence

of CNAs and used it to investigate the accuracy, running time and memory con-

sumption of the three methods. We also investigated their performance on a real

dataset and assessed their consistency. An important contribution of this paper is

the use of phylogeny-based analysis of CNA calls to identify potentially erroneous

ones. In particular, the use of a phylogeny helps identify regions that have witnessed

a large number of mutations which could be further explored for potential error or

some interesting biological explanation.

We found that in terms of the accuracy of the detected breakpoints and memory

consumption, HMMcopy is the best of the three methods, and in terms of running

time, it is slower than CopyNumber but faster than Ginkgo. However, when evalu-

ated the methods in terms of the actual copy number profiles they detect, we found
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that Ginkgo is more accurate than HMMcopy; in fact, we found that HMMcopy

is not stable at this task (paradoxically, CopyNumber does not detect actual copy

numbers). In terms of accuracy, CopyNumber has a very poor performance. While

Knouse et al. [34] assessed the performance of CBS and HMM-based methods on

single-cell DNA sequencing data, their evaluation is limited to CNVs in brain and

skin cells. Moreover, they did not investigate the effect of the ploidy on the accu-

racy of the methods. Our results highlight the need for developing new accurate

and efficient methods for CNA detection from single-cell DNA data.

Results
To better understand the strengths and limitations of current approaches for CNA

detection from single-cell DNA sequencing data, we selected HMMcopy, Ginkgo,

and CopyNumber using both simulation and realistic data.

For simulation, we designed three experiments to evaluate the performance of

the three methods under different conditions. The first experiment was designed

to evaluate the recall and precision of the CNA detection methods. We designed

the simulation study in this experiment to produce single cells that have ideal read

count variability and normal ploidy levels ranging between 2 and 3, so that we can

learn how the methods perform when the data is relatively not challenging. The

second experiment was designed to evaluate the performance of each method under

a variety of ploidy levels. Specifically, we simulated single cells whose ploidies range

from 1.5 to 5.26 (the ploidy of a cell is defined as the average copy number across the

cell’s genome). We then compared the recall and precision of the three methods on

the simulated data at different ploidies. The third experiment was designed to assess

the performance of each method under different coverage variabilities. In particular,

we simulated single cells whose coverage variabilities mimic those produced by three

single-cell sequencing technologies (MALBAC, DOP-PCR and TnBC) [39] that have

been used for CNA detection.

Performance on simulated datasets

In the first experiment, we simulated the evolution of 10,000 cells from which we

generated, through sampling without replacement, three 1000-cell datasets. For each

cell, we simulated read data using a simulator that we developed (Methods). We

then aligned the reads back to the reference genome using BWA with default pa-

rameters [40,41]. Finally, we ran each of three methods on the resulting BAM files,

and computed the recall and precision of each method based on the ground truth

generated by the simulator.

We assessed the methods’ performances in coarse- and fine-grained analyses.

For the coarse-grained evaluation, we inspected the breakpoint positions as well

as whether they were consistent with the ground truth in terms of the estimated

gain/loss state (rather than the actual value) in the copy number. The predicted

breakpoint is counted as consistent with the ground truth whenever it has the same

status (i.e., the copy number increases or decreases) and its genomic location is

within a certain distance of its counterpart in the ground truth. We varied the

value of this distance to study the methods’ accuracies. Each ground truth break-

point was matched by at most one predicted breakpoint to avoid double counting
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of the true-positive calls. For each method, we varied a parameter to obtain the

receiver operator characteristic (ROC) curve, the details of which are described in

the caption of Fig 1.

A preliminary analysis of CopyNumber on the data revealed that the method

achieves extremely low recall and precision. Since CopyNumber pools all the cells

together for breakpoint detection, we suspected that this poor performance owes

mainly to the method’s lack of sensitivity in detecting breakpoints shared by only a

small number of cells. Therefore, to allow for more meaningful comparison of Copy-

Number to the other two methods, we eliminated breakpoint pairs shared by fewer

than five cells in the ground truth and used the resulting new ground truth to eval-

uate CopyNumber’s recall and precision (but we did not filter the breakpoints for

the other two methods). As Fig 1a shows, CopyNumber still has, by far, the poorest

performance. We hypothesize that for a breakpoint to be detectable by CopyNum-

ber, it needs to be shared by a large number of cells. We further checked this by

calculating the number of cells sharing a breakpoint that is called or missed by

CopyNumber, and found that there is a significant difference between the two sets

(p-value < 9.019e-09 for Student’s t-test with mean 9.27 versus 5.35). We also ob-

serve that as the tolerance threshold for the detected breakpoint position increases,

improvement in CopyNumber’s performance is much larger than the improvement

in the performance of the other two methods. However, even with the most forgiv-

ing threshold (two breakpoints are considered to be the same if their positions are

within 1 million basepairs of each other), CopyNumber still has poorer performance

than the other two methods even under the most stringent threshold. Overall, the

results in Fig.1a show that (1) HMMcopy generally outperforms the other two meth-

ods, with Ginkgo being a close second, and (2) that even HMMcopy’s best recall

and precision are around 0.8 and 0.7, respectively.

In the fine-grained analysis, we focused on the agreement of the absolute copy

numbers on both 5’ and 3’ of an inferred breakpoint with those of the ground

truth, in addition to the requirements on gain/loss consistency and distance. Since

CopyNumber does not predict the absolute copy numbers for an individual cell,

it is not considered in this analysis. Surprisingly, HMMcopy’s prediction of the

absolute copy number is not stable, leading to a bimodal distribution of both recall

and precision (S1 Fig). We found that cells with low recall and precision correspond

mainly to cases where HMMcopy made inaccurate estimates of the cells’ ploidies (S2

Fig). We then selected only those cells for which the ploidy was correctly predicted

(i.e., 2 or 3), and plotted the ROC curve of HMMcopy on them. We found that

HMMcopy performed generally better than Ginkgo (Fig 1b), which is in agreement

with the coarse-grained analysis. The recall and precision for the two methods

dropped, which is expected since the true positives and negatives are now measured

most stringently. However, we observed that the difference in results between the

coarse- and fine-grained analyses is not large, suggesting that once the breakpoint is

found by these methods, predicting the absolute copy number can be attained quite

accurately. This is especially true for Ginkgo whose ploidy prediction is stable.

Similar results were observed on the other two datasets (S3 and S4 Figs).

The results in Fig 1 were obtained under default parameters except for the pa-

rameters that were tuned to generate the ROC curves (alpha, gamma, and nu).
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However, we found that the value of parameter strength in HMMcopy has to be

much larger than the default value in order to make the results more expected, i.e.,

increasing recall is accompanied with decreasing precision, and vice versa. We there-

fore set strength to be 10 million. According to HMMcopy’s users’ guide, strength

is the parameter that controls how much the initial values of e, which controls the

probability of extending a segment, remains the same throughout the iterations.

We found that setting strength would help to have a good quality control of the

result by making the initial setting of e last throughout all the iterations. Apart

from parameters nu and strength, we found that e is also an important parameter in

HMMcopy. The larger the value of e, the smaller the chance that the breakpoint is

detected. To explore which combination can yield the best performance for HMM-

copy, we varied both e and nu and calculated the F1 score. The performance of

HMMcopy is the best when nu is 4 and e ≥ 0.999999 (S5 Fig).

We also analyzed the computational requirements in terms of running time and

memory consumption for the three methods on a 1000-cell dataset (Fig 2). Ginkgo

is the slowest among the three and CopyNumber is the fastest. HMMcopy is in be-

tween Ginkgo and CopyNumber in terms of running time. For memory consumption,

Ginkgo is the most demanding of the three, followed by CopyNumber. HMMcopy

is the lightest in terms of memory consumption. Note that in running Ginkgo, we

eliminated the steps of generating figures such as heatmaps and copy number pro-

file, so that these do not affect the running time and memory in comparison with

the other two methods. For CopyNumber, an extra step is required to generate

its input file. We used the intermediate result of HMMcopy, i.e., the GC corrected

read count on each bin, as the input to CopyNumber. We take the time for cal-

culating this intermediate file into account for CopyNumber for a fair comparison.

Since CopyNumber processes all the cells together, we suspect that more cells will

require more memory, whereas Ginkgo and HMMcopy’s memory requirements are

not affected by the number of cells involved.

In summary, we found that HMMcopy is the most accurate in predicting break-

points among the three. When HMMcopy’s prediction of ploidy is accurate, its

recall and precision of predicting the absolute copy number are the best among the

three methods. However, it is not as stable as Ginkgo in terms of the absolute copy

number detection since its prediction of ploidy is wrong for many cells (49.4% for

default values of nu and e). CopyNumber’s recall and precision are the worst of

the three methods. Moreover, it cannot predict the absolute copy number for each

individual cell, and thus is not as applicable as the other two methods.

The effect of ploidy on performance

To test the robustness of the methods to different ploidies, we varied the ploidy

by tuning the parameters that control whole chromosomal amplifications and the

rate of deletion (see the “Methods” section). We varied the ploidy from 1.5 to

5. Specifically, we used 1.5, 2.1, 3, 3.8, and 5.26 (we refer to them as 1, 2, 3, 4,

and 5, respectively, hereafter), and generated three datasets for each ploidy. We

tuned the coverage parameter for each ploidy so that the total number of reads

for different ploidies are approximately the same to avoid adding reads for larger

genomes resulting from higher ploidies.

https://rdrr.io/bioc/HMMcopy/man/HMMsegment.html
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We ran each method using their default parameters (except the strength pa-

rameter in HMMcopy). Finding CopyNumber’s recall to be zero using the default

gamma, we tuned gamma using the optimal value, i.e., 5, shown in Fig 1. We then

found the recall greatly increased with this setting. Similar to the previous experi-

ment, we again removed those breakpoint pairs shared by ≤ 5 cells from the ground

truth for evaluating CopyNumber’s performance.

We used different combinations of the parameters to simulate high-ploidy cells

(details are in the “Methods” section), i.e., 4 and 5, and found that in the absence

of odd and intermediate copy numbers, HMMcopy’s inference of the ploidy and

absolute copy numbers were inaccurate (S6 Fig). This is also the case for Ginkgo

in the absence of the odd copy numbers. However, despite the lack of intermediate

copy numbers, Ginkgo correctly predicted absolute copy numbers for the case of

ploidy=5, showing that Ginkgo is more robust to changes in ploidy than HMMcopy

in terms of predicting absolute copy numbers. In summary, the lack of odd or

intermediate copy numbers in the data led to wrong predictions of absolute copy

numbers. We then tuned the simulator’s parameters so that in higher ploidies there

are odd and intermediate copy numbers to avoid the extremely hard cases for CNA

detection (details are in the “Methods” section). Fig 3 shows the precision and recall

for the three methods for coarse- and fine-grained analyses, respectively.

In the coarse-grained analysis, Ginkgo’s recall is > 0.8 in general, but its precision

is relatively low (i.e., < 0.4) for ploidy 2 and 3. This is probably because it was

affected by the variability of the read counts and over-segmented the genome. With

similar recall, HMMcopy has higher precision at all ploidies. CopyNumber’s recall

and precision are low (< 0.4) for all ploidies, with low recall and precision for ploidy

5 and low precision for ploidy 2.

In the fine-grained analysis, Ginkgo’s recall and precision dropped by about 10%

as compared with the coarse-grained results. Its recall dropped the most for ploidy 5,

indicating the challenge in accurately predicting the absolute copy number for high-

ploidy cells. Although the odd and intermediate copy number states are present in

this simulated data, HMMcopy’s precision and recall are still bimodally distributed

for all ploidies.

As we observed cells whose incorrect ploidy prediction led to wrong prediction

of absolute copy numbers in the previous experiment, these bimodal distributions

further showed that such wrong prediction can widely occur to cells with different

ploidies. Similar results were observed on the other two datasets (S7-S10 Figs). We

then plotted the predicted versus actual ploidies for all cells for five simulated ploi-

dies on one dataset, and found that HMMcopy’s predicted ploidies deviate from

the true ploidy for all simulated ploidies, whereas Ginkgo’s prediction of ploidy is

relatively accurate (Figs S11-S12). Specifically, we noticed that when the ploidy is

between 1.5 and 3, most of the incorrectly predicted ploidies accumulated at the

values that are multiples of the actual ploidy. For example, when the actual ploidy

is 2, the incorrectly predicted ploidies were at 4 and 6, as seen in the histogram

in S12(c) Fig. When the actual ploidy is greater than 4, the incorrectly predicted

ploidies centered around the actual ploidy but with a large deviation. While both

phenomena are probably due to the wrong selection of the best-fitting ploidy, which

can be further traced to a suboptimal scoring algorithm for selecting the best ploi-

dies in HMMcopy, the first phenomenon of having multiples of the actual ploidy
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is possibly also due to that the algorithm mistook the noises as the intermediate

copy numbers, leading to a much larger predicted ploidy. In addition, while both

Ginkgo and HMMcopy adopt a post-segmentation step for inferring the ploidy, the

fact that Ginkgo allows non-integer ploidy but HMMcopy does not may lead to

their performance difference in inferring the ploidy.

Since AneuFinder and HMMcopy are both HMM-based methods but use different

emission probability distributions (HMMcopy uses Gaussian whereas AneuFinder

uses negative binomial), we also tested AneuFinder on datasets of varying ploidies

(1.14.0, method=“edivisive”, binsizes=2e5). We applied AneuFinder to the same

dataset we described above and found that AneuFinder’s recall and precision are

generally lower than that of HMMcopy’s, and the difference is extremely large when

the ploidy is above 3. In particular, AneuFinder’s precision drops below 0.2 for

ploidy at 4 and 5 with recall between 0.4 and 0.6 (S13 Fig) for coarse-grained

analysis. In other words, at a lower recall, the precision of AneuFinder for ploidy

above 3 is at least 50% smaller than those of HMMcopy’s. When the ploidy is

between 2 and 3, while the recall of AneuFinder is close to that of HMMcopy, its

precision is still much poorer than that of HMMcopy. For fine-grained analysis,

AneuFinder’s recall further drops near 0.2 when the ploidy is 4, and 0.05 when the

ploidy is 5. Its precision also drops near 0.05 when the ploidy is 5 (S14 Fig). In all,

we conclude that although AneuFinder does not show bimodality on fine-grained

analysis, its recall and precision are both much lower than those of HMMcopy

especially at high-ploidy datasets.

The effect of coverage on performance

To evaluate the performance of each method under different single-cell sequencing

technologies, we sampled 20 cells from the simulated dataset and simulated their

sequencing at four levels of coverage variabilities, corresponding to MALBAC, DOP-

PCR, TnBC and Bulk sequencing (see details in the “Methods” section) and ran

the three methods on each of them. We generated three datasets for each level of

variability. Fig 4 show the performance on one of the datasets. With decreasing

variability, all three methods’ recall increased under both the coarse- and fine-

grained analyses. Ginkgo’s and HMMcopy’s precisions increased with decreasing

variability. CopyNumber’s precision, on the other hand, stays the same regardless

of the coverage variability level, whereas its recall generally increases. In summary,

better sequencing technology leads to better performance. The best that can be

ever obtained (Bulk sequencing) is about 15% higher than the worst (MALBAC)

for recall, and slightly higher for precision.

We looked into the copy number profiles in cases where HMMcopy’s precision

and recall were effectively 0 (one such case is illustrated in S15 Fig). We found that

choosing a wrong ploidy from the set of candidate ploidies by HMMcopy may result

in a copy number profile in which all the segments are predicted to have the same

absolute copy number, whereas the closest profile to the ground truth is among the

reported non-optimal results. We observed that in such cases, the wrong choice of

ploidy may affect both the segmentation and inference of the absolute copy number

of those segments.

Similar results were observed on the other two repetitions (S16-19 Figs).
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Performance on a real dataset

In real data analysis, due to the lack of ground truth, we evaluated the performance

of the three methods in two ways. First, we evaluated the consistency among the

three methods. The more overlap among the methods, the more consistent they are.

Second, we inferred a maximum parsimony tree using PAUP [42] from the inferred

copy number profiles and calculated the smallest number of copy number changes

for each bin across all the branches of the tree, where the genome at the root of

the tree is assumed to be diploid. The rationale for the latter way of assessing

performance is that if the CNAs called by a method result (under a parsimony

analysis) in a very large number of changes of the copy number at any bin, then

one plausible explanation is error in the calls (another plausible prediction is that,

for some reason, the locus corresponding to that bin has repeatedly gained and lost

copies during the evolution of the cells which could be indicative of some interesting

biological processes at play).

We downloaded single-cell DNA sequencing data of seven samples (the median

number of cells in the seven samples is 47) from [43] and selected those pre-treatment

samples whose CNA profiles had not changed due to treatment compared with mid-

treatment and post-treatment ones. We then ran the three methods with default

parameters (except for the strength parameter in HMMcopy, as discussed above)

on the single cells in each sample.

For assessing accuracy, we generated for each sample a Venn diagram of the pre-

dictions based on all three methods, where predictions by two methods were deemed

consistent according to the same rule we used in the simulation study (in assessing

consistency between predictions and the ground truth). Fig 5a shows the results for

Sample 102 (S20 Fig shows results for the other six samples). It can be seen that

47% of Ginkgo’s calls overlapped with the other two methods, leaving a large por-

tion as unique calls. HMMcopy overlapped well with the other two methods, with

22% of unique calls. In particular, HMMcopy overlapped well with Ginkgo: 76%

of HMMcopy’s calls overlapped with Ginkgo. CopyNumber’s overlap with Ginkgo

was larger than that of HMMcopy (65% versus 43%). The overlap among the three

methods is a very small portion of the union of all calls (8%), indicating a very

large inconsistency among the three methods. From these results, we observe that

HMMcopy performed the best among the three in breakpoint calling, if we consider

consistency with other methods as a metric of quality, which is consistent with what

we observed on the simulated data.

We then investigated the smallest number of changes required to explain the copy

numbers detected by Ginkgo and HMMcopy (again, CopyNumber does not detect

absolute copy numbers, which is why it is excluded in this analysis). To accomplish

this, we inferred a phylogenetic tree from the inferred copy number profiles of the

individual cells under the maximum parsimony criterion. We then inferred ancestral

copy number profiles, also under the maximum parsimony criterion, and tabulated,

for each bin, the number of changes that occurred along the branches of the tree. A

bin that has a very large number of changes in the copy number could be pursued

for further analysis. Two possible explanations of large number of changes are erro-

neous inferred copy numbers in this bin, or some real biological phenomenon that

is worth pursuing further. Note that in this analysis we make the independent-bin
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assumption (copy number aberrations on each bin are independent of each other)

and assume that bins undergo changes once at a time. More complex evolutionary

models such as considering a group of neighboring bins together for a copy number

aberration are beginning to emerge, but computing the parsimony score under those

models is intractable [44]. Fig 5b and Fig 5c show the distributions of copy number

changes based on HMMcopy and Ginkgo’s results, respectively (S21-22 Figs show

results for the other six samples). Interestingly, four out of seven samples (samples

102, 132, 152, and 302) showed a higher number of bins that have one copy number

change than ones with no copy number changes. The other three samples (samples

126, 129, 615) have the most bins that had no copy number changes at all. Generally

the number of bins that had copy number changes decreased with the increasing

number of changes. On the other hand, based on the HMMcopy results, all samples

showed much higher percentage of no copy number change than those with some

copy number change.

Discussion
Single-cell DNA sequencing data holds great promise for elucidating the complex

biological processes that underly human diseases, including cancer. Copy number

aberrations have been implicated in cancer, and their accurate detection from single-

cell DNA sequencing data is of great potential to diagnosis and treatment of cancer.

In this paper, we investigated the performance of three representative methods,

Ginkgo, HMMcopy, and CopyNumber, that have been widely applied to single-cell

sequencing cancer data for CNA detection.

We compared the three methods on simulated data generated under different set-

tings that reflect varying degrees of complexity in the data. To accomplish this

task, we developed a simulator that is flexible to simulate different scenarios and

also mimic realistic data. We found that HMMcopy performs the best for breakpoint

detection. However, HMMcopy is not stable in inferring the absolute copy number.

Ginkgo performs well for both breakpoint detection and inference of the absolute

copy number. CopyNumber is not as sensitive as the other two methods. We also

looked into the performance of the three methods when ploidies were varied. We

found that data with higher ploidies presented challenges for Ginkgo. HMMcopy is

the most robust in terms of breakpoint detection among the three methods regard-

less of the ploidy, but its inference of the absolute copy number is not accurate for

all ploidies. However, since the program yields copy number profiles for all possible

integer ploidies, selecting the correct ploidy and obtaining the right copy number

profiles will be trivial if given the pre-specified ploidy information, for example from

DAPI staining. Both recall and precision of CopyNumber are the worst among the

three methods. To explore the effect of technology artifacts on the accuracy of the

methods, we simulated data that mimics the variability in coverage correspond-

ing to MALBAC, DOP-PCR, TnBC, and Bulk. We found that all three methods’

recall generally increases with the improvement in the technology, with smaller ob-

served change in their precision. We then applied the three methods to real data

and evaluated their performance by analyzing the shared and unique detections

they made as well as counting the total number of copy number changes must be

invoked based on their detections. We found a good amount of overlap in detections
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between Ginkgo and HMMcopy. We also found that HMMcopy’s detections result

in fewer copy number changes than Ginkgo’s.

Our benchmarking study highlights several points. First, the ploidy and cover-

age of the genome under analysis affect the ability of a computational method to

detect CNAs. Second, there is much more power in analyzing all cells in a data

set simultaneously, as the fact that they all evolved from a common ancestral cell

provide not only signal for the inference, but also accounts naturally for model

complexity and regularizes the number of changes in copy numbers. Third, using

algorithms and tools from the field of phylogenetics can help significantly in this

area. As we demonstrated above on the biological data set, parsimony analysis of

phylogenetic trees can be used to identify regions with large numbers of changes in

the copy number, especially convergent changes, and those can be further inspected

for determining whether the high rate of change reflects a biological process that is

worth pursuing or it is due to sequencing or computational inference error artifacts.

Finally, our results show that while existing methods are a good step in the right

direction, there is need for developing more accurate methods for CNA detection,

especially ones that are designed specifically to model the specifics of single-cell

DNA sequencing.

Methods
Simulation

Two steps are involved in simulating reads for single-cell sequencing. First, the cell

tree is generated, where the nodes are the cells, and the edges represent the parent-

daughter cell relation. The leaf nodes represent the single cells that are sampled

from the patient; the internal nodes represent the cells that existed in the past

and were not sampled. We set the root node as a human normal genome without

any CNA, assuming that all CNAs are somatic. The tree is simulated by the Beta-

Splitting model (see below), which allows producing imbalanced trees, consistent

with what was observed in the real data [45].

On each edge (except for those attached to the root of the tree; see below),

we simulate a number of CNAs, the number of which corresponds to a Poisson

distribution (by default, λ = 2). λ relates with the mutation rate which has been

studied for two decades [46,47]. There has not yet been a comprehensive knowledge

of the mutation rate of CNAs, but according to the data from [43], we found there

are about several dozens of CNAs in this dataset. The same can be found in a pan-

cancer study [48]. Setting default λ to be 2 will lead to the similar number of CNAs

at the leaves for a tree. The daughter cell of the edge inherits all CNAs in the parent

node, in addition to its unique CNAs. To simulate a CNA, we randomly choose the

allele, and the chromosome and position on the allele that CNA is going to occur.

First, we sample the allele on which the CNA is going to occur from the paternal and

maternal alleles according to a binomial distribution (default p = 0.5). We designed

the simulator in a framework which keeps track of the allele at which the CNA

occurs so that in our future work of simulating single nucleotide variations (SNV)

simultaneously, the allele that is dropped due to the high allelic dropout rate can

be traced. For the CNA size, we sample from an exponential distribution (default

mean=5Mbp), plus a minimum CNA size (default 2Mbp). We set the minimum
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CNA size by default to be 2Mbp because these CNAs are rare and commonly

associated with disease [49], and also because of the limited resolution of single-cell

data. The exponential distribution with mean 5Mbp is to render a wide range of

CNA size. According to [34, 50], the larger the CNA size, the smaller the CNAs

possibility. We choose copy number gain versus loss by a binomial distribution

(default p = 0.5). We set the default parameter to be 0.5 so that copy number gain

and loss are equally distributed. If a copy number gain is sampled, we sample from

a geometric distribution (default p = 0.5) to determine the number of copies to be

gained (mean=1/p). This choice of a distribution is motivated by the observation

that extremely high copy number gains are very rare and are often observed by

double minutes amplification [51], which we do not take into account currently.

Once a whole-genome DNA sequence is simulated with the CNAs, the gained copies

are placed in tandem with the original copy. If a copy number loss is sampled, the

whole sequence on that region of the allele is deleted.

The CNAs on the edges attached to the root node are simulated differently. In

particular, clonal whole chromosomal amplifications can occur on these edge, as

indicated in the punctuated evolution model observed in [45]. We simulate the

chromosomal amplifications in addition to the focal CNAs. We set the probability of

a chromosome to be amplified to be according to a binomial distribution (default p =

0.2). This default value is used so that while the whole chromosome amplification

is introduced, 20% chromosomes in the genome will be changed. The number of the

amplified copy is sampled from a geometric distribution (default mean is p = 1)

multiplied by a value (default is 1) to amplify the copy numbers simulated without

changing the distribution. The distribution of the whole chromosomal amplification

can be turned off as an option.

At the edge to the root, we also add an option to allow more CNAs than the

other edges. This is again to mimic a scenario of punctuated evolution [45]. To do

that, we sample a value from a Poisson distribution (by default, λ = 4) which is the

multiplier of the average number of the CNAs that occur to the edges other than

the root. Thus the edge to the root has on average 4 times (default parameter)

more focal CNAs than those of other edges. The higher this number, the more

focal CNAs the edge to the root carries. This parameter is introduced to allow the

user to simulate data that mimics the punctuated evolution model. However, due

to the diversity of models that have been summarized for cancer evolution [52],

users can turn off this option or tune the parameter λ so that the simulated data

corresponds to their observation and experience. In our study, the value of λ was

chosen according to the length of the trunk observed in Fig 6 in [45].

Once we have the tree and the DNA sequences for all leaf nodes, we simulate

the generation of read data from the genomes. Given the coverage of the genome

(by default 0.04X), the simulator divides the genome into non-overlapping bins

each of which has a default size of 200,000bp. To simulate the coverage variabil-

ity observed in single-cell data, we use a Markov Chain Monte Carlo (MCMC)

Metropolis-Hastings algorithm to determine a sequence of numbers of read pairs to

be sampled for each bin.

An input of the variability information is a point on the Lorenz curve, whose X

axis represents the percentage of the reads, and Y axis represents the percentage
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of the coverage. We transform it to a Beta distribution by Equations (1) and (2)

in [53]. Through this transformation, we can sample read counts from a Beta distri-

bution that corresponds to the given Lorenz curve. The followings are mathematical

equations in [53] that are used to calculate the parameters (α and β) for the Beta

distribution. In more detail, suppose X is a random variable whose cumulative dis-

tribution function F corresponds to a Beta distribution with parameters α and β.

A point x sampled from this distribution has its corresponding X and Y positions

on the Lorenz curve as F (x) and φ(x), where

F (x) = Ix(α, β) (1)

and

φ(x) = Ix(α+ 1, β) (2)

Given a point (F (x), φ(x)) on the Lorenz curve, we can calculate α and β for the

Beta distribution.

Given the Beta distribution’s parameters, we can then sample read count for each

bin by MCMC Metropolis-Hastings algorithm. Starting from the first bin whose read

count is assigned as the expected coverage x0, we sample the next bin’s proposed

read count x′ by a Gaussian distribution, and accept it if compared with the previous

bin’s read count x0,

Ix′(α, β)×Gaus(x′|x0)

Ix0(α, β)×Gaus(x0|x′)
≤ u (3)

where Gaus(x′|x0) is the proposal probability of proposing x′ given x0, and u is the

acceptance ratio. We set u to be 0.5 by default. We set the same standard deviations

for Gaus(x′|x0) and Gaus(x0|x′), centered at x0 and x′, respectively. Thus the two

Gaussian distribution canceled out. The rest term, Ix′/Ix0
≤ u, controls how much

the next bin’s read count differs from the current one. The read counts drawn are

thus corresponding to a Beta distribution, and are simultaneously constrained by

the acceptance ratio of the Metropolis-Hastings algorithm. This is to mimic the

realistic data whose read coverage fluctuates, but the read count changes smoothly

without sharp changes between neighboring bins.

Running the programs

In all experiments, we eliminated reads that have mapping quality score < 40.

We eliminated the cells that HMMcopy predicted as normal cells (predicted to be

diploid and found no copy number aberration) in all experiments, the percentage

of which was very small ( < 0.2%).

Parameters of simulator

The simulator is designed to be flexible, with user-specified parameters, as now

describe.
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Parameters for varying the ploidy level

To generate data with different ploidies, parameters associated with whole chromo-

somal amplification can be set for that purpose.

• -W (–whole-amp) Controls whether there are whole chromosomal amplifi-

cations or not.

• -d (–del-rate) The rate of copy number loss versus copy number gain.

• -C (–whole-amp-rate) The possibility that a chromosome is selected to

have whole chromosomal amplification.

• -E (–whole-amp-num) For those chromosomes that are selected to be am-

plified, multiplying this number with the sampled value from a geometric

distribution, whose p is “-J” described below, renders the final number of

copies to be amplified.

• -J (–amp-num-geo-par) The parameter p in the geometric distribution

from which the number of copy of the chromosome to be amplified is sampled.

Combination of -J and -E can make a variety of copy number distributions

and make it convenient to attain higher copy number gains when necessary.

In our experiment above where we varied the ploidy level, we use a combination of

these five parameters to generate data whose ploidies range from 1.5 to 5 as follows.

• Ploidy = 1.5: -W 0 -d 1 No amplifications are allowed, and all copy number

aberrations come from deletion.

• Ploidy = 3: -W 1 -d 0.5 -C 0.5 -E 1 -J 1 Amplification is allowed, and

the average number of amplification for the whole genome is 0.5 for one allele.

The final ploidy is 3.

• Ploidy = 4, the case that lacks odd copy numbers: -W 1 -d 0.5 -C 0.5

-E 2 -J 1 Amplification is allowed, and the average number of amplification

for the whole genome is 1 for one allele. The final ploidy is 4. Note that since

the parameter p in the geometric distribution (-J) is set to be one, the copy

number is amplified by two for the allele that is selected for amplification.

This causes the lack of intermediate copy numbers such as three, five, etc.

• Ploidy = 3.8, the case that has odd copy numbers: -W 1 -d 0.5 -C 0.9

-E 1 -J 1 Amplification is allowed, and the average number of amplification

for the whole genome is 0.9 for one allele. The final ploidy is 3.8. Compared

with the previous case which lacks odd copy numbers, we increase the copy

number by doubling 90% of the chromosomes. The following local copy num-

ber aberrations that are performed based on the amplified genome will then

generate regions that have different copies, including the odd copies. In the

absence of odd copy numbers, copy numbers 2, 4 and 6 will be considered as

1, 2, and 3 by any method. Thus, without copy numbers 1, 3 and 5, there is

no way for a method to tell the correct absolute copy number.

• Ploidy = 5, the case that lacks intermediate copy numbers: -W 1 -d 0.5

-C 0.5 -E 3 -J 1 Amplification is allowed, and the average number of ampli-

fications for the whole genome is 1 for one allele. The final ploidy is 5. Note

that since the parameter p in the geometric distribution (-J) is set to be one,

the copy number is amplified by three for the allele that is selected for ampli-

fication. This causes a scenario where most of the copy numbers are two, five

and eight.
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• Ploidy = 5.26, the case that has intermediate copy numbers: -W 1 -d 0.5

-C 0.9 -E 1 -J 0.55 Amplification is allowed, and the average number of

amplification for the whole genome is 0.9 for one allele. Setting parameter

J to be 0.55, the total amplified copy number for each allele is 1.63 (from

1/p× 0.9). The final ploidy is 5.26.

Parameters for varying the read count distribution

Since Lorenz curves have been used to evaluate the variability of read counts

[32, 39, 54], we used the Lorenz curves reported in [39] for simulating variabili-

ties at different levels. We sampled the read counts for each bin by the distribution

(Beta distribution) corresponding to their Lorenz curves using a Markov Chain

Metropolis-Hastings method (S23 Fig shows the Lorenz curves (left panel) and

their corresponding Beta distributions (right panel) for the four technologies. The

key parameters used for the Lorenz curves and Beta distributions corresponding to

the four technologies are shown within the panels.).

The Beta-splitting model

For generating the underlying evolutionary trees, we followed a generalization of the

Blum-François Beta-splitting model [55] which is inspired by Aldous’ Beta-splitting

model [56]. The construction of a tree based on this model [57] consists of two

major steps: First, we generate two sequences of random values: B = (b1, b2, · · · )
and U = (u1, u2, · · · ), B is a sequence of independent and identically distributed

(i.i.d.) random variables sampled from the B(α + 1, β + 1) distribution, and, U is

a sequence of i.i.d. random variables with the uniform distribution on [0, 1]. We

call {gi = (ui, bi)i∈N} the generating sequence which is the basis of incremental

construction of a tree. At the second step, we run the following algorithm on the

random values generated at the first step. The process of constructing an evolution-

ary tree for n cells/leaves based on the Beta-splitting model with the parameters

(α, β) combining these two steps is described in the following pseudocode.

Algorithm 1 Algorithm for constructing a tree T with n leaves with the Beta param-

eters α and β.
1: function BuildBetaSplittingTree(n, α, β)
2: Create the root of T
3: T .root.label← (0, 1)
4: for i = 1 · · ·n do
5: Sample bi ∼ B(α+ 1, β + 1)
6: Sample ui ∼ U(0, 1)
7: for each leaf ∈ T .leaves do
8: (x, y)← leaf.label
9: if ui ∈ [x, y] then

10: l← Create the left child of leaf
11: r ← Create the right child of leaf
12: r.label← (x+ (y − x)bi, y)
13: l.label← (x, x+ (y − x)bi)
14: leaf.label← i
15: end if
16: end for
17: end for
18: return T
19: end function
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Software availability

The simulator has been implemented in Python and is freely available at https:

//github.com/compbiofan/SingleCellCNABenchmark.git, which also includes the

scripts for regenerating the comparison results for both simulated and real datasets.

Availability of data and materials

The new version of HMMcopy was downloaded from https://github.com/shahcompbio/

single cell pipeline/tree/master/single cell/workflows/hmmcopy. The scripts to

preprocess files for HMMcopy were downloaded from https://shahlab.ca/projects/

hmmcopy utils/. We use hg19 for all experiments in this manuscript and the mappa-

bility file used by HMMcopy was downloaded from http://genome.ucsc.edu/cgi-bin/

hgFileUi?db=hg19&g=wgEncodeMapability. CopyNumber was downloaded from

https://bioconductor.org/packages/release/bioc/html/copynumber.html. Ginkgo’s

command line version which was used in this manuscript was downloaded from

https://github.com/robertaboukhalil/ginkgo.

The real biological dataset that we analyzed is available from NCBI Sequence

Read Archive under accession SRP114962.
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Glossary
• Segmentation Computationally segmenting the genome into non-overlapping regions so that each region

has a homogeneous copy number.

• Boundary and Breakpoint Positions on the genome where segmentation occurs.

• Absolute Copy Number The integer value representing the number of copies of a region on the genome.

• Ploidy The average copy number across the genome.
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11. Czyż, Z.T., Hoffmann, M., Schlimok, G., Polzer, B., Klein, C.A.: Reliable single cell array CGH for clinical

samples. PloS one 9(1), 85907 (2014)

12. Mosen-Ansorena, D., Telleria, N., Veganzones, S., De la Orden, V., Maestro, M.L., Aransay, A.M.: seqCNA: an

R package for DNA copy number analysis in cancer using high-throughput sequencing. BMC genomics 15(1),

178 (2014)

13. Jang, H., Lee, H.: Multiresolution correction of GC bias and application to identification of copy number

alterations. Bioinformatics (2019)

14. Ivakhno, S., Royce, T., Cox, A.J., Evers, D.J., Cheetham, R.K., Tavaré, S.: CNAseg—a novel framework for
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Figures

Figure 1 ROC curves of the three methods HMMcopy, Ginkgo, and
CopyNumber. (a) Coarse-grained analysis results, and (b) fine-grained results. For each
method, the results based on three thresholds of correctness are plotted. For HMMcopy,
nu, which controls the suggested degree of freedom between states, was tuned to take on
the values 0.01 (rightmost), 0.1, 2.1 (the tool’s default), 4, 10, and 20 (leftmost). For
Ginkgo, alpha, which controls the significance level to accept a change point, was tuned
to take on the values 1e-1000 (rightmost), 1e-100, 1e-10, 1e-5, 1e-4, 1e-3, 1e-2 (the
tool’s default), 0.02, and 0.05 (leftmost). The dots corresponding to values 1e-5 and
1e-10 in coarse-grained analysis overlap. For CopyNumber, gamma, which is the weight
of the penalty on changing a state, was tuned to take on the values 40 (rightmost, and
the tool’s default), 10, 5, 4, 3, 2, and 1 (leftmost).

Figure 2 Computational requirements of Ginkgo, HMMcopy, and
CopyNumber. Results are for analyzing a 1000-cell dataset on Intel(R) Xeon(R) CPU
E5-2650 v2 whose clock speed is 2.60GHz. Left and right panels correspond to running
time (in log10 of seconds) and memory consumption (in log10 of kb). The running time
and memory were recorded for using different parameters as described in Fig. 1. As
Ginkgo’s running time increases more than twofold for α = 0.05, we treated it as an
outlier and did not include this running time point in this plot.

Figure 3 Recall and Precision of Ginkgo, HMMcopy, and CopyNumber as
functions of the ploidy. The ploidy level is varied and the results are based on the (a)
coarse-grained and (b) fine-grained analyses. The ploidies of the simulated data were 1.5,
2.1, 3.0, 3.8, and 5.3.

https://rdrr.io/bioc/DNAcopy/man/segment.html
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Figure 4 Recall and Precision of Ginkgo, HMMcopy, and CopyNumber as
functions of the coverage. The coverage is varied and the results are based on the (a)
coarse-grained and (b) fine-grained analyses. The coverages are varied to mimic those
produced by MALBAC, DOP-PCR, TnBC and Bulk sequencing.

Figure 5 Comparison of HMMcopy, Ginkgo and CopyNumber on Sample
102 in [43]. (a) Venn diagram of the breakpoints from Ginkgo, HMMcopy and
CopyNumber. Breakpoints from two methods are counted as overlapping if they are
within 400,000bp of each other. (b) Distribution of the copy number changes (under a
parsimony analysis) per bin based on the copy number profiles obtained by HMMcopy for
the seven samples. (c) Distribution of the copy number changes (under a parsimony
analysis) per bin based on the copy number profiles obtained by Ginkgo for the seven
samples. For (b) and (c), a maximum parsimony tree was inferred from the copy number
profiles of the cells, and the minimum number of copy number changes per bin along all
the branches of the tree was computed by parsimony analysis. The percentages of the bins
with each number of copy number changes are plotted.
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