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various types of cancer. A wide array of methods for CNA detection has been
either developed specifically for or adapted to single-cell DNA sequencing data.
Understanding the strengths and limitations that are unique to each of these
methods is very important for obtaining accurate copy number profiles from
single-cell DNA sequencing data.

Results: We benchmarked three widely used methods—Ginkgo, HMMcopy, and
CopyNumber—on simulated as well as real datasets. To facilitate this, we
developed a novel simulator of single-cell genome evolution in the presence of
CNAs. Furthermore, to assess performance on empirical data where the ground
truth is unknown, we introduce a phylogeny-based measure for identifying
potentially erroneous inferences.

Conclusion: While single-cell DNA sequencing is very promising for elucidating
and understanding CNAs, our findings show that even the best existing method
does not exceed 80% accuracy. New methods that significantly improve upon the
accuracy of these three methods are needed. Furthermore, with the large datasets
being generated, the methods must be computationally efficient.

Keywords: Tumor evolution; Intra-tumor heterogeneity; Single-cell DNA
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Background
Acquired mutations are the main causes of cancer [1-3]. Copy number aberrations
(CNAs) are one such type of acquired mutations and have been implicated in over-
regulating oncogenes or down-regulating tumor suppressor genes [4]. Consequently,
accurate detection of CNAs could hold a great promise to understanding some of the
genetic underpinnings of cancer as well as developing targeted drugs. In the past two
decades, a wide array of DNA technologies have been used to detect CNAs, among
which the three most widely used are array Comparative Genomic Hybridization
(aCGH), Next Generation Sequencing (NGS), and single-cell sequencing [5].
Array CGH [6] is a cytogenetic approach that uses fluorescent dyes on the test
(tumor) and reference (normal) samples, and applies them to a microarray, which
is an array of probes. Each probe is a DNA sequence that represents a region of
interest. The size of a probe depends on the DNA sequence being used, and it varies
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from dozens of base pairs, such as oligonucleotides, to thousands of base pairs, such
as bacterial artificial chromosomes. The probes from the paired samples, after be-
ing mixed together, hybridize at each target region. The fluorescence intensities
can then be measured for both samples, and the ratio of the two is used to inform
about CNAs of the test sample relative to the normal one. Array CGH data is ad-
vantageous in comprehensively detecting aneuploidies, amplifications, and deletions
simultaneously. A few computational methods [7-9] have been developed to detect
CNAs using aCGH data. DNAcopy [7] applies a modification of binary segmen-
tation [10] called circular binary segmentation (CBS) to aCGH to overcome data
noise, but it suffers from the problem of outliers [8,9]. HMMcopy [8] was designed
to ameliorate the problem of outliers and uses a Hidden Markov Model (HMM)
to divide the genome into piecewise fixed segments in order to make inferences on
CNAs. However, since aCGH data is limited in resolution and throughput [11], as
well as suffers from a hybridization bias problem, it is not the optimal technology
to detect CNAs for cancer samples.

Unlike aCGH, which obtains signal on only a limited number of genomic sites
of interest, NGS technology makes it possible to survey the whole genome at a
nucleotide-level resolution by sequencing millions of small fragments (reads) of the
genome in parallel. By aligning the reads to an assembled reference genome, the
reads that cover a position in the genome are counted to obtain the read depth
at that position. Read depths at different regions of the genome can then be con-
trasted to assess hypothesized genomic locations where copy number gains and
losses had occurred. NGS technologies suffer from high false positive rate compared
with aCGH, due mainly to GC bias and the presence of repetitive regions [12,13].
Even more challenging in the case of cancer genomes that are often aneuploid, con-
tamination of normal cells may occur in the bulk tissue further complicating the
task of estimating the absolute copy number from NGS data. To overcome these
challenges, a plethora of computational tools [12,14-21] have been developed for
detecting CNAs from NGS data. SeqCNA [12] filters out potentially false-positive
CNAs and corrects GC content for a more accurate CNA detection. CNAseg [14]
analyzes flowcell-to-flowcell variability to avoid false-positive CNAs. CNAnorm [15]
addresses the normal contamination and aneuploidy of the tumor sample to infer
CNAs accurately. Paired-end NGS data provides another modality in addition to
the read depth to infer CNA, and a few bioinformatics tools use this, including, for
example, CNVer [17], CNVnator [18], ReadDepth [19], and Mseq-CNV [20].

Although both aCGH and NGS data can be used to detect CNAs, they do not
provide high-throughput data at the single-cell resolution that is ideal for under-
standing tumor growth. In particular, intratumor heterogeneity [22] is best under-
stood by using data obtained from individual cells within the tumor tissue. Indeed,
in the last ten years, the field has made great strides towards developing technolo-
gies for single-cell DNA sequencing. Data generated by these technologies can be
analyzed to detect CNAs and other types of mutations in individual cells and in-
dividual clones within the heterogeneous tumor [23]. For example, DOP-PCR is
a PCR amplification method that generates low-coverage data suitable for CNA
detection in single-cell data [24-27]. However, it also suffers from uneven coverage
and allelic dropout [23] that could lead to false-positive calls of CNAs. Beyond
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this method, three tools have been extensively applied to single-cell sequencing
data for CNA detection: AneuFinder [28,29], CopyNumber [30], and Ginkgo [31].
Like HMMcopy, AneuFinder uses a Hidden Markov Model (HMM) to determine
the segmentation of the genome and the absolute copy number of each segment.
CopyNumber [30] pools all the cells together for joint segmentation to improve
boundary detection accuracy. Since cancer cells in the same subclone mostly share
the same CNA boundaries, such a strategy can improve the nucleotide resolution of
the boundary by implicitly amplifying the signal in the data. Ginkgo [31] uses Cir-
cular Binary Segmentation (CBS) [7] to segment the genome, followed by inferring
the integer value of the absolute copy number. It is worth noting that some meth-
ods designed for aCGH and NGS data have also been extensively used on single-cell
data, and this is especially true for HMMcopy [32-36]. As both AneuFinder and
HMDMcopy are HMM-based methods, we focus on HMMcopy as a representative
of the HMM-based approach due to its wide application to single-cell sequencing
data in multiple studies [32-36]. However, considering AneuFinder appears later
than HMMcopy, we also benchmark its performance particularly on different ploi-
dies, as from our observation of HMMcopy, correctly inferring the ploidy level is
a challenge to such HMM-based approaches. A more recent method is SCNV [37],
which uses a bin-free segmentation method to do segmentation and copy number
profiling. However, the method has not been widely applied to single-cell DNA
studies. Most recently, Chisel [38] was introduced for detecting CNAs in single-cell
sequencing data. With the help of a matched normal sample or identified normal
single cells, Chisel phases CNAs by germline single nucleotide polymorphisms at a
low coverage, and further infers allele- and haplotype-specific CNAs. Such allele-
and haplotype-specific CNAs can subsequently help improve single-cell clustering
and phylogenetic tree inference. As our study here does not deal with phasing, we
did not include Chisel in our study. Among CopyNumber, Ginkgo, and HMM_copy,
only CopyNumber utilized the pooled information from single-cell data. The other
two methods can be equally well applied to bulk samples. Moreover, HMMcopy was
designed for aCGH data originally, and thus does not take into account the specific
error profiles that characterize single-cell sequencing data, such as low and uneven
coverage, or the computational challenges that arise due to biological processes such
as aneuploidy in a tumor single cell.

In this paper, we compared and benchmarked three methods that have been widely
applied to CNA detection on single-cell DNA cancer data: Ginkgo, HMMcopy, and
CopyNumber. We developed a simulator of cancer genome evolution in the presence
of CNAs and used it to investigate the accuracy, running time and memory con-
sumption of the three methods. We also investigated their performance on a real
dataset and assessed their consistency. An important contribution of this paper is
the use of phylogeny-based analysis of CNA calls to identify potentially erroneous
ones. In particular, the use of a phylogeny helps identify regions that have witnessed
a large number of mutations which could be further explored for potential error or
some interesting biological explanation.

We found that in terms of the accuracy of the detected breakpoints and memory
consumption, HMMcopy is the best of the three methods, and in terms of running
time, it is slower than CopyNumber but faster than Ginkgo. However, when evalu-
ated the methods in terms of the actual copy number profiles they detect, we found
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that Ginkgo is more accurate than HMMcopy; in fact, we found that HMMcopy
is not stable at this task (paradoxically, CopyNumber does not detect actual copy
numbers). In terms of accuracy, CopyNumber has a very poor performance. While
Knouse et al. [34] assessed the performance of CBS and HMM-based methods on
single-cell DNA sequencing data, their evaluation is limited to CNVs in brain and
skin cells. Moreover, they did not investigate the effect of the ploidy on the accu-
racy of the methods. Our results highlight the need for developing new accurate
and efficient methods for CNA detection from single-cell DNA data.

Results

To better understand the strengths and limitations of current approaches for CNA
detection from single-cell DNA sequencing data, we selected HMMcopy, Ginkgo,
and CopyNumber using both simulation and realistic data.

For simulation, we designed three experiments to evaluate the performance of
the three methods under different conditions. The first experiment was designed
to evaluate the recall and precision of the CNA detection methods. We designed
the simulation study in this experiment to produce single cells that have ideal read
count variability and normal ploidy levels ranging between 2 and 3, so that we can
learn how the methods perform when the data is relatively not challenging. The
second experiment was designed to evaluate the performance of each method under
a variety of ploidy levels. Specifically, we simulated single cells whose ploidies range
from 1.5 to 5.26 (the ploidy of a cell is defined as the average copy number across the
cell’s genome). We then compared the recall and precision of the three methods on
the simulated data at different ploidies. The third experiment was designed to assess
the performance of each method under different coverage variabilities. In particular,
we simulated single cells whose coverage variabilities mimic those produced by three
single-cell sequencing technologies (MALBAC, DOP-PCR and TuBC) [39] that have
been used for CNA detection.

Performance on simulated datasets

In the first experiment, we simulated the evolution of 10,000 cells from which we
generated, through sampling without replacement, three 1000-cell datasets. For each
cell, we simulated read data using a simulator that we developed (Methods). We
then aligned the reads back to the reference genome using BWA with default pa-
rameters [40,41]. Finally, we ran each of three methods on the resulting BAM files,
and computed the recall and precision of each method based on the ground truth
generated by the simulator.

We assessed the methods’ performances in coarse- and fine-grained analyses.
For the coarse-grained evaluation, we inspected the breakpoint positions as well
as whether they were consistent with the ground truth in terms of the estimated
gain/loss state (rather than the actual value) in the copy number. The predicted
breakpoint is counted as consistent with the ground truth whenever it has the same
status (i.e., the copy number increases or decreases) and its genomic location is
within a certain distance of its counterpart in the ground truth. We varied the
value of this distance to study the methods’ accuracies. Each ground truth break-
point was matched by at most one predicted breakpoint to avoid double counting
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of the true-positive calls. For each method, we varied a parameter to obtain the
receiver operator characteristic (ROC) curve, the details of which are described in
the caption of Fig 1.

A preliminary analysis of CopyNumber on the data revealed that the method
achieves extremely low recall and precision. Since CopyNumber pools all the cells
together for breakpoint detection, we suspected that this poor performance owes
mainly to the method’s lack of sensitivity in detecting breakpoints shared by only a
small number of cells. Therefore, to allow for more meaningful comparison of Copy-
Number to the other two methods, we eliminated breakpoint pairs shared by fewer
than five cells in the ground truth and used the resulting new ground truth to eval-
uate CopyNumber’s recall and precision (but we did not filter the breakpoints for
the other two methods). As Fig 1a shows, CopyNumber still has, by far, the poorest
performance. We hypothesize that for a breakpoint to be detectable by CopyNum-
ber, it needs to be shared by a large number of cells. We further checked this by
calculating the number of cells sharing a breakpoint that is called or missed by
CopyNumber, and found that there is a significant difference between the two sets
(p-value < 9.019¢-09 for Student’s t-test with mean 9.27 versus 5.35). We also ob-
serve that as the tolerance threshold for the detected breakpoint position increases,
improvement in CopyNumber’s performance is much larger than the improvement
in the performance of the other two methods. However, even with the most forgiv-
ing threshold (two breakpoints are considered to be the same if their positions are
within 1 million basepairs of each other), CopyNumber still has poorer performance
than the other two methods even under the most stringent threshold. Overall, the
results in Fig.1a show that (1) HMMcopy generally outperforms the other two meth-
ods, with Ginkgo being a close second, and (2) that even HMMcopy’s best recall
and precision are around 0.8 and 0.7, respectively.

In the fine-grained analysis, we focused on the agreement of the absolute copy
numbers on both 5’ and 3’ of an inferred breakpoint with those of the ground
truth, in addition to the requirements on gain/loss consistency and distance. Since
CopyNumber does not predict the absolute copy numbers for an individual cell,
it is not considered in this analysis. Surprisingly, HMMcopy’s prediction of the
absolute copy number is not stable, leading to a bimodal distribution of both recall
and precision (S1 Fig). We found that cells with low recall and precision correspond
mainly to cases where HMMcopy made inaccurate estimates of the cells’ ploidies (S2
Fig). We then selected only those cells for which the ploidy was correctly predicted
(i.e., 2 or 3), and plotted the ROC curve of HMMcopy on them. We found that
HMMCcopy performed generally better than Ginkgo (Fig 1b), which is in agreement
with the coarse-grained analysis. The recall and precision for the two methods
dropped, which is expected since the true positives and negatives are now measured
most stringently. However, we observed that the difference in results between the
coarse- and fine-grained analyses is not large, suggesting that once the breakpoint is
found by these methods, predicting the absolute copy number can be attained quite
accurately. This is especially true for Ginkgo whose ploidy prediction is stable.

Similar results were observed on the other two datasets (S3 and S4 Figs).

The results in Fig 1 were obtained under default parameters except for the pa-
rameters that were tuned to generate the ROC curves (alpha, gamma, and nu).
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However, we found that the value of parameter strength in HMMcopy has to be
much larger than the default value in order to make the results more expected, i.e.,
increasing recall is accompanied with decreasing precision, and vice versa. We there-
fore set strength to be 10 million. According to HMMcopy’s users’ guide, strength
is the parameter that controls how much the initial values of e, which controls the
probability of extending a segment, remains the same throughout the iterations.
We found that setting strength would help to have a good quality control of the
result by making the initial setting of e last throughout all the iterations. Apart
from parameters nu and strength, we found that e is also an important parameter in
HMMecopy. The larger the value of e, the smaller the chance that the breakpoint is
detected. To explore which combination can yield the best performance for HMM-
copy, we varied both e and nu and calculated the F1 score. The performance of
HMMcopy is the best when nu is 4 and e > 0.999999 (S5 Fig).

We also analyzed the computational requirements in terms of running time and
memory consumption for the three methods on a 1000-cell dataset (Fig 2). Ginkgo
is the slowest among the three and CopyNumber is the fastest. HMMcopy is in be-
tween Ginkgo and CopyNumber in terms of running time. For memory consumption,
Ginkgo is the most demanding of the three, followed by CopyNumber. HMMcopy
is the lightest in terms of memory consumption. Note that in running Ginkgo, we
eliminated the steps of generating figures such as heatmaps and copy number pro-
file, so that these do not affect the running time and memory in comparison with
the other two methods. For CopyNumber, an extra step is required to generate
its input file. We used the intermediate result of HMMcopy, i.e., the GC corrected
read count on each bin, as the input to CopyNumber. We take the time for cal-
culating this intermediate file into account for CopyNumber for a fair comparison.
Since CopyNumber processes all the cells together, we suspect that more cells will
require more memory, whereas Ginkgo and HMMcopy’s memory requirements are
not affected by the number of cells involved.

In summary, we found that HMMcopy is the most accurate in predicting break-
points among the three. When HMMcopy’s prediction of ploidy is accurate, its
recall and precision of predicting the absolute copy number are the best among the
three methods. However, it is not as stable as Ginkgo in terms of the absolute copy
number detection since its prediction of ploidy is wrong for many cells (49.4% for
default values of nu and e). CopyNumber’s recall and precision are the worst of
the three methods. Moreover, it cannot predict the absolute copy number for each
individual cell, and thus is not as applicable as the other two methods.

The effect of ploidy on performance

To test the robustness of the methods to different ploidies, we varied the ploidy
by tuning the parameters that control whole chromosomal amplifications and the
rate of deletion (see the “Methods” section). We varied the ploidy from 1.5 to
5. Specifically, we used 1.5, 2.1, 3, 3.8, and 5.26 (we refer to them as 1, 2, 3, 4,
and 5, respectively, hereafter), and generated three datasets for each ploidy. We
tuned the coverage parameter for each ploidy so that the total number of reads
for different ploidies are approximately the same to avoid adding reads for larger
genomes resulting from higher ploidies.
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We ran each method using their default parameters (except the strength pa-
rameter in HMMecopy). Finding CopyNumber’s recall to be zero using the default
gamma, we tuned gamma using the optimal value, i.e., 5, shown in Fig 1. We then
found the recall greatly increased with this setting. Similar to the previous experi-
ment, we again removed those breakpoint pairs shared by < 5 cells from the ground
truth for evaluating CopyNumber’s performance.

We used different combinations of the parameters to simulate high-ploidy cells
(details are in the “Methods” section), i.e., 4 and 5, and found that in the absence
of odd and intermediate copy numbers, HMMecopy’s inference of the ploidy and
absolute copy numbers were inaccurate (S6 Fig). This is also the case for Ginkgo
in the absence of the odd copy numbers. However, despite the lack of intermediate
copy numbers, Ginkgo correctly predicted absolute copy numbers for the case of
ploidy=>5, showing that Ginkgo is more robust to changes in ploidy than HMMcopy
in terms of predicting absolute copy numbers. In summary, the lack of odd or
intermediate copy numbers in the data led to wrong predictions of absolute copy
numbers. We then tuned the simulator’s parameters so that in higher ploidies there
are odd and intermediate copy numbers to avoid the extremely hard cases for CNA
detection (details are in the “Methods” section). Fig 3 shows the precision and recall
for the three methods for coarse- and fine-grained analyses, respectively.

In the coarse-grained analysis, Ginkgo’s recall is > 0.8 in general, but its precision
is relatively low (i.e., < 0.4) for ploidy 2 and 3. This is probably because it was
affected by the variability of the read counts and over-segmented the genome. With
similar recall, HMMecopy has higher precision at all ploidies. CopyNumber’s recall
and precision are low (< 0.4) for all ploidies, with low recall and precision for ploidy
5 and low precision for ploidy 2.

In the fine-grained analysis, Ginkgo’s recall and precision dropped by about 10%
as compared with the coarse-grained results. Its recall dropped the most for ploidy 5,
indicating the challenge in accurately predicting the absolute copy number for high-
ploidy cells. Although the odd and intermediate copy number states are present in
this simulated data, HMMcopy’s precision and recall are still bimodally distributed
for all ploidies.

As we observed cells whose incorrect ploidy prediction led to wrong prediction
of absolute copy numbers in the previous experiment, these bimodal distributions
further showed that such wrong prediction can widely occur to cells with different
ploidies. Similar results were observed on the other two datasets (S7-S10 Figs). We
then plotted the predicted versus actual ploidies for all cells for five simulated ploi-
dies on one dataset, and found that HMMcopy’s predicted ploidies deviate from
the true ploidy for all simulated ploidies, whereas Ginkgo’s prediction of ploidy is
relatively accurate (Figs S11-S12). Specifically, we noticed that when the ploidy is
between 1.5 and 3, most of the incorrectly predicted ploidies accumulated at the
values that are multiples of the actual ploidy. For example, when the actual ploidy
is 2, the incorrectly predicted ploidies were at 4 and 6, as seen in the histogram
in S12(c) Fig. When the actual ploidy is greater than 4, the incorrectly predicted
ploidies centered around the actual ploidy but with a large deviation. While both
phenomena are probably due to the wrong selection of the best-fitting ploidy, which
can be further traced to a suboptimal scoring algorithm for selecting the best ploi-
dies in HMMcopy, the first phenomenon of having multiples of the actual ploidy
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is possibly also due to that the algorithm mistook the noises as the intermediate
copy numbers, leading to a much larger predicted ploidy. In addition, while both
Ginkgo and HMMcopy adopt a post-segmentation step for inferring the ploidy, the
fact that Ginkgo allows non-integer ploidy but HMMcopy does not may lead to
their performance difference in inferring the ploidy.

Since AneuFinder and HMMcopy are both HMM-based methods but use different
emission probability distributions (HMMcopy uses Gaussian whereas AneuFinder
uses negative binomial), we also tested AneuFinder on datasets of varying ploidies
(1.14.0, method="“edivisive”, binsizes=2e5). We applied AneuFinder to the same
dataset we described above and found that AneuFinder’s recall and precision are
generally lower than that of HMMcopy’s, and the difference is extremely large when
the ploidy is above 3. In particular, AneuFinder’s precision drops below 0.2 for
ploidy at 4 and 5 with recall between 0.4 and 0.6 (S13 Fig) for coarse-grained
analysis. In other words, at a lower recall, the precision of AneuFinder for ploidy
above 3 is at least 50% smaller than those of HMMcopy’s. When the ploidy is
between 2 and 3, while the recall of AneuFinder is close to that of HMMcopy, its
precision is still much poorer than that of HMMcopy. For fine-grained analysis,
AneuFinder’s recall further drops near 0.2 when the ploidy is 4, and 0.05 when the
ploidy is 5. Its precision also drops near 0.05 when the ploidy is 5 (S14 Fig). In all,
we conclude that although AneuFinder does not show bimodality on fine-grained
analysis, its recall and precision are both much lower than those of HMMcopy
especially at high-ploidy datasets.

The effect of coverage on performance

To evaluate the performance of each method under different single-cell sequencing
technologies, we sampled 20 cells from the simulated dataset and simulated their
sequencing at four levels of coverage variabilities, corresponding to MALBAC, DOP-
PCR, TnBC and Bulk sequencing (see details in the “Methods” section) and ran
the three methods on each of them. We generated three datasets for each level of
variability. Fig 4 show the performance on one of the datasets. With decreasing
variability, all three methods’ recall increased under both the coarse- and fine-
grained analyses. Ginkgo’s and HMMecopy’s precisions increased with decreasing
variability. CopyNumber’s precision, on the other hand, stays the same regardless
of the coverage variability level, whereas its recall generally increases. In summary,
better sequencing technology leads to better performance. The best that can be
ever obtained (Bulk sequencing) is about 15% higher than the worst (MALBAC)
for recall, and slightly higher for precision.

We looked into the copy number profiles in cases where HMMcopy’s precision
and recall were effectively 0 (one such case is illustrated in S15 Fig). We found that
choosing a wrong ploidy from the set of candidate ploidies by HMMcopy may result
in a copy number profile in which all the segments are predicted to have the same
absolute copy number, whereas the closest profile to the ground truth is among the
reported non-optimal results. We observed that in such cases, the wrong choice of
ploidy may affect both the segmentation and inference of the absolute copy number
of those segments.

Similar results were observed on the other two repetitions (S16-19 Figs).
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Performance on a real dataset

In real data analysis, due to the lack of ground truth, we evaluated the performance
of the three methods in two ways. First, we evaluated the consistency among the
three methods. The more overlap among the methods, the more consistent they are.
Second, we inferred a maximum parsimony tree using PAUP [42] from the inferred
copy number profiles and calculated the smallest number of copy number changes
for each bin across all the branches of the tree, where the genome at the root of
the tree is assumed to be diploid. The rationale for the latter way of assessing
performance is that if the CNAs called by a method result (under a parsimony
analysis) in a very large number of changes of the copy number at any bin, then
one plausible explanation is error in the calls (another plausible prediction is that,
for some reason, the locus corresponding to that bin has repeatedly gained and lost
copies during the evolution of the cells which could be indicative of some interesting
biological processes at play).

We downloaded single-cell DNA sequencing data of seven samples (the median
number of cells in the seven samples is 47) from [43] and selected those pre-treatment
samples whose CNA profiles had not changed due to treatment compared with mid-
treatment and post-treatment ones. We then ran the three methods with default
parameters (except for the strength parameter in HMMcopy, as discussed above)
on the single cells in each sample.

For assessing accuracy, we generated for each sample a Venn diagram of the pre-
dictions based on all three methods, where predictions by two methods were deemed
consistent according to the same rule we used in the simulation study (in assessing
consistency between predictions and the ground truth). Fig 5a shows the results for
Sample 102 (S20 Fig shows results for the other six samples). It can be seen that
47% of Ginkgo’s calls overlapped with the other two methods, leaving a large por-
tion as unique calls. HMMcopy overlapped well with the other two methods, with
22% of unique calls. In particular, HMMcopy overlapped well with Ginkgo: 76%
of HMMcopy'’s calls overlapped with Ginkgo. CopyNumber’s overlap with Ginkgo
was larger than that of HMMcopy (65% versus 43%). The overlap among the three
methods is a very small portion of the union of all calls (8%), indicating a very
large inconsistency among the three methods. From these results, we observe that
HMDMcopy performed the best among the three in breakpoint calling, if we consider
consistency with other methods as a metric of quality, which is consistent with what
we observed on the simulated data.

We then investigated the smallest number of changes required to explain the copy
numbers detected by Ginkgo and HMMcopy (again, CopyNumber does not detect
absolute copy numbers, which is why it is excluded in this analysis). To accomplish
this, we inferred a phylogenetic tree from the inferred copy number profiles of the
individual cells under the maximum parsimony criterion. We then inferred ancestral
copy number profiles, also under the maximum parsimony criterion, and tabulated,
for each bin, the number of changes that occurred along the branches of the tree. A
bin that has a very large number of changes in the copy number could be pursued
for further analysis. Two possible explanations of large number of changes are erro-
neous inferred copy numbers in this bin, or some real biological phenomenon that
is worth pursuing further. Note that in this analysis we make the independent-bin
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assumption (copy number aberrations on each bin are independent of each other)
and assume that bins undergo changes once at a time. More complex evolutionary
models such as considering a group of neighboring bins together for a copy number
aberration are beginning to emerge, but computing the parsimony score under those
models is intractable [44]. Fig 5b and Fig 5¢ show the distributions of copy number
changes based on HMMcopy and Ginkgo’s results, respectively (S21-22 Figs show
results for the other six samples). Interestingly, four out of seven samples (samples
102, 132, 152, and 302) showed a higher number of bins that have one copy number
change than ones with no copy number changes. The other three samples (samples
126, 129, 615) have the most bins that had no copy number changes at all. Generally
the number of bins that had copy number changes decreased with the increasing
number of changes. On the other hand, based on the HMMcopy results, all samples
showed much higher percentage of no copy number change than those with some
copy number change.

Discussion

Single-cell DNA sequencing data holds great promise for elucidating the complex
biological processes that underly human diseases, including cancer. Copy number
aberrations have been implicated in cancer, and their accurate detection from single-
cell DNA sequencing data is of great potential to diagnosis and treatment of cancer.
In this paper, we investigated the performance of three representative methods,
Ginkgo, HMMcopy, and CopyNumber, that have been widely applied to single-cell
sequencing cancer data for CNA detection.

We compared the three methods on simulated data generated under different set-
tings that reflect varying degrees of complexity in the data. To accomplish this
task, we developed a simulator that is flexible to simulate different scenarios and
also mimic realistic data. We found that HMMcopy performs the best for breakpoint
detection. However, HMMCcopy is not stable in inferring the absolute copy number.
Ginkgo performs well for both breakpoint detection and inference of the absolute
copy number. CopyNumber is not as sensitive as the other two methods. We also
looked into the performance of the three methods when ploidies were varied. We
found that data with higher ploidies presented challenges for Ginkgo. HMMcopy is
the most robust in terms of breakpoint detection among the three methods regard-
less of the ploidy, but its inference of the absolute copy number is not accurate for
all ploidies. However, since the program yields copy number profiles for all possible
integer ploidies, selecting the correct ploidy and obtaining the right copy number
profiles will be trivial if given the pre-specified ploidy information, for example from
DAPI staining. Both recall and precision of CopyNumber are the worst among the
three methods. To explore the effect of technology artifacts on the accuracy of the
methods, we simulated data that mimics the variability in coverage correspond-
ing to MALBAC, DOP-PCR, TnBC, and Bulk. We found that all three methods’
recall generally increases with the improvement in the technology, with smaller ob-
served change in their precision. We then applied the three methods to real data
and evaluated their performance by analyzing the shared and unique detections
they made as well as counting the total number of copy number changes must be
invoked based on their detections. We found a good amount of overlap in detections
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between Ginkgo and HMMcopy. We also found that HMMcopy’s detections result
in fewer copy number changes than Ginkgo’s.

Our benchmarking study highlights several points. First, the ploidy and cover-
age of the genome under analysis affect the ability of a computational method to
detect CNAs. Second, there is much more power in analyzing all cells in a data
set simultaneously, as the fact that they all evolved from a common ancestral cell
provide not only signal for the inference, but also accounts naturally for model
complexity and regularizes the number of changes in copy numbers. Third, using
algorithms and tools from the field of phylogenetics can help significantly in this
area. As we demonstrated above on the biological data set, parsimony analysis of
phylogenetic trees can be used to identify regions with large numbers of changes in
the copy number, especially convergent changes, and those can be further inspected
for determining whether the high rate of change reflects a biological process that is
worth pursuing or it is due to sequencing or computational inference error artifacts.
Finally, our results show that while existing methods are a good step in the right
direction, there is need for developing more accurate methods for CNA detection,
especially ones that are designed specifically to model the specifics of single-cell
DNA sequencing.

Methods

Simulation

Two steps are involved in simulating reads for single-cell sequencing. First, the cell
tree is generated, where the nodes are the cells, and the edges represent the parent-
daughter cell relation. The leaf nodes represent the single cells that are sampled
from the patient; the internal nodes represent the cells that existed in the past
and were not sampled. We set the root node as a human normal genome without
any CNA, assuming that all CNAs are somatic. The tree is simulated by the Beta-
Splitting model (see below), which allows producing imbalanced trees, consistent
with what was observed in the real data [45].

On each edge (except for those attached to the root of the tree; see below),
we simulate a number of CNAs, the number of which corresponds to a Poisson
distribution (by default, A = 2). X relates with the mutation rate which has been
studied for two decades [46,47]. There has not yet been a comprehensive knowledge
of the mutation rate of CNAs, but according to the data from [43], we found there
are about several dozens of CNAs in this dataset. The same can be found in a pan-
cancer study [48]. Setting default A to be 2 will lead to the similar number of CNAs
at the leaves for a tree. The daughter cell of the edge inherits all CNAs in the parent
node, in addition to its unique CNAs. To simulate a CNA, we randomly choose the
allele, and the chromosome and position on the allele that CNA is going to occur.
First, we sample the allele on which the CNA is going to occur from the paternal and
maternal alleles according to a binomial distribution (default p = 0.5). We designed
the simulator in a framework which keeps track of the allele at which the CNA
occurs so that in our future work of simulating single nucleotide variations (SNV)
simultaneously, the allele that is dropped due to the high allelic dropout rate can
be traced. For the CNA size, we sample from an exponential distribution (default
mean=5Mbp), plus a minimum CNA size (default 2Mbp). We set the minimum
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CNA size by default to be 2Mbp because these CNAs are rare and commonly
associated with disease [49], and also because of the limited resolution of single-cell
data. The exponential distribution with mean 5Mbp is to render a wide range of
CNA size. According to [34,50], the larger the CNA size, the smaller the CNAs
possibility. We choose copy number gain versus loss by a binomial distribution
(default p = 0.5). We set the default parameter to be 0.5 so that copy number gain
and loss are equally distributed. If a copy number gain is sampled, we sample from
a geometric distribution (default p = 0.5) to determine the number of copies to be
gained (mean=1/p). This choice of a distribution is motivated by the observation
that extremely high copy number gains are very rare and are often observed by
double minutes amplification [51], which we do not take into account currently.
Once a whole-genome DNA sequence is simulated with the CNAs, the gained copies
are placed in tandem with the original copy. If a copy number loss is sampled, the
whole sequence on that region of the allele is deleted.

The CNAs on the edges attached to the root node are simulated differently. In
particular, clonal whole chromosomal amplifications can occur on these edge, as
indicated in the punctuated evolution model observed in [45]. We simulate the
chromosomal amplifications in addition to the focal CNAs. We set the probability of
a chromosome to be amplified to be according to a binomial distribution (default p =
0.2). This default value is used so that while the whole chromosome amplification
is introduced, 20% chromosomes in the genome will be changed. The number of the
amplified copy is sampled from a geometric distribution (default mean is p = 1)
multiplied by a value (default is 1) to amplify the copy numbers simulated without
changing the distribution. The distribution of the whole chromosomal amplification
can be turned off as an option.

At the edge to the root, we also add an option to allow more CNAs than the
other edges. This is again to mimic a scenario of punctuated evolution [45]. To do
that, we sample a value from a Poisson distribution (by default, A = 4) which is the
multiplier of the average number of the CNAs that occur to the edges other than
the root. Thus the edge to the root has on average 4 times (default parameter)
more focal CNAs than those of other edges. The higher this number, the more
focal CNAs the edge to the root carries. This parameter is introduced to allow the
user to simulate data that mimics the punctuated evolution model. However, due
to the diversity of models that have been summarized for cancer evolution [52],
users can turn off this option or tune the parameter A so that the simulated data
corresponds to their observation and experience. In our study, the value of A was
chosen according to the length of the trunk observed in Fig 6 in [45].

Once we have the tree and the DNA sequences for all leaf nodes, we simulate
the generation of read data from the genomes. Given the coverage of the genome
(by default 0.04X), the simulator divides the genome into non-overlapping bins
each of which has a default size of 200,000bp. To simulate the coverage variabil-
ity observed in single-cell data, we use a Markov Chain Monte Carlo (MCMC)
Metropolis-Hastings algorithm to determine a sequence of numbers of read pairs to
be sampled for each bin.

An input of the variability information is a point on the Lorenz curve, whose X

axis represents the percentage of the reads, and Y axis represents the percentage
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of the coverage. We transform it to a Beta distribution by Equations (1) and (2)
in [53]. Through this transformation, we can sample read counts from a Beta distri-
bution that corresponds to the given Lorenz curve. The followings are mathematical
equations in [53] that are used to calculate the parameters (« and 3) for the Beta
distribution. In more detail, suppose X is a random variable whose cumulative dis-
tribution function F' corresponds to a Beta distribution with parameters « and .
A point z sampled from this distribution has its corresponding X and Y positions

on the Lorenz curve as F(z) and ¢(z), where

F(z) = I(a, B) (1)

and

Given a point (F'(z), ¢(x)) on the Lorenz curve, we can calculate o and g for the
Beta distribution.

Given the Beta distribution’s parameters, we can then sample read count for each
bin by MCMC Metropolis-Hastings algorithm. Starting from the first bin whose read
count is assigned as the expected coverage zy, we sample the next bin’s proposed
read count 2’ by a Gaussian distribution, and accept it if compared with the previous

bin’s read count xg
b

I (o, B) x Gaus(2'|zg) < 3)
I, (o, B) x Gaus(zo|z’)

where Gaus(z'|zg) is the proposal probability of proposing 2’ given x¢, and w is the
acceptance ratio. We set u to be 0.5 by default. We set the same standard deviations
for Gaus(2'|zg) and Gaus(zg|z’), centered at x¢ and 2/, respectively. Thus the two
Gaussian distribution canceled out. The rest term, I,/ /I, < u, controls how much
the next bin’s read count differs from the current one. The read counts drawn are
thus corresponding to a Beta distribution, and are simultaneously constrained by
the acceptance ratio of the Metropolis-Hastings algorithm. This is to mimic the
realistic data whose read coverage fluctuates, but the read count changes smoothly

without sharp changes between neighboring bins.

Running the programs

In all experiments, we eliminated reads that have mapping quality score < 40.
We eliminated the cells that HMMcopy predicted as normal cells (predicted to be
diploid and found no copy number aberration) in all experiments, the percentage
of which was very small ( < 0.2%).

Parameters of simulator
The simulator is designed to be flexible, with user-specified parameters, as now
describe.
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Parameters for varying the ploidy level
To generate data with different ploidies, parameters associated with whole chromo-
somal amplification can be set for that purpose.

e -W (—whole-amp) Controls whether there are whole chromosomal amplifi-

cations or not.

-d (—del-rate) The rate of copy number loss versus copy number gain.

-C (—whole-amp-rate) The possibility that a chromosome is selected to
have whole chromosomal amplification.

-E (—whole-amp-num) For those chromosomes that are selected to be am-
plified, multiplying this number with the sampled value from a geometric
distribution, whose p is “-J” described below, renders the final number of
copies to be amplified.

-J (—amp-num-geo-par) The parameter p in the geometric distribution
from which the number of copy of the chromosome to be amplified is sampled.
Combination of -J and -E can make a variety of copy number distributions
and make it convenient to attain higher copy number gains when necessary.

In our experiment above where we varied the ploidy level, we use a combination of
these five parameters to generate data whose ploidies range from 1.5 to 5 as follows.
e Ploidy = 1.5: -W 0 -d 1 No amplifications are allowed, and all copy number

aberrations come from deletion.

Ploidy = 3: -W 1 -d 0.5 -C 0.5 -E 1 -J 1 Amplification is allowed, and
the average number of amplification for the whole genome is 0.5 for one allele.
The final ploidy is 3.

Ploidy = 4, the case that lacks odd copy numbers: -W 1 -d 0.5 -C 0.5
-E 2 -J 1 Amplification is allowed, and the average number of amplification
for the whole genome is 1 for one allele. The final ploidy is 4. Note that since
the parameter p in the geometric distribution (-J) is set to be one, the copy
number is amplified by two for the allele that is selected for amplification.
This causes the lack of intermediate copy numbers such as three, five, etc.
Ploidy = 3.8, the case that has odd copy numbers: -W 1 -d 0.5 -C 0.9
-E 1 -J 1 Amplification is allowed, and the average number of amplification
for the whole genome is 0.9 for one allele. The final ploidy is 3.8. Compared
with the previous case which lacks odd copy numbers, we increase the copy
number by doubling 90% of the chromosomes. The following local copy num-
ber aberrations that are performed based on the amplified genome will then
generate regions that have different copies, including the odd copies. In the
absence of odd copy numbers, copy numbers 2, 4 and 6 will be considered as
1, 2, and 3 by any method. Thus, without copy numbers 1, 3 and 5, there is
no way for a method to tell the correct absolute copy number.

Ploidy = 5, the case that lacks intermediate copy numbers: -W 1 -d 0.5
-C 0.5 -E 3 -J 1 Amplification is allowed, and the average number of ampli-
fications for the whole genome is 1 for one allele. The final ploidy is 5. Note
that since the parameter p in the geometric distribution (-J) is set to be one,
the copy number is amplified by three for the allele that is selected for ampli-
fication. This causes a scenario where most of the copy numbers are two, five
and eight.
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e Ploidy = 5.26, the case that has intermediate copy numbers: -W 1 -d 0.5
-C 0.9 -E 1 -J 0.55 Amplification is allowed, and the average number of
amplification for the whole genome is 0.9 for one allele. Setting parameter
J to be 0.55, the total amplified copy number for each allele is 1.63 (from
1/p x 0.9). The final ploidy is 5.26.

Parameters for varying the read count distribution

Since Lorenz curves have been used to evaluate the variability of read counts
[32, 39, 54], we used the Lorenz curves reported in [39] for simulating variabili-
ties at different levels. We sampled the read counts for each bin by the distribution
(Beta distribution) corresponding to their Lorenz curves using a Markov Chain
Metropolis-Hastings method (S23 Fig shows the Lorenz curves (left panel) and
their corresponding Beta distributions (right panel) for the four technologies. The
key parameters used for the Lorenz curves and Beta distributions corresponding to

the four technologies are shown within the panels.).

The Beta-splitting model

For generating the underlying evolutionary trees, we followed a generalization of the
Blum-Frangois Beta-splitting model [55] which is inspired by Aldous’ Beta-splitting
model [56]. The construction of a tree based on this model [57] consists of two
major steps: First, we generate two sequences of random values: B = (b1,ba,- )
and U = (uy,us,--+), B is a sequence of independent and identically distributed
(ii.d.) random variables sampled from the #(«a + 1,8 + 1) distribution, and, U is
a sequence of i.i.d. random variables with the uniform distribution on [0,1]. We
call {g; = (ui,bi)ien} the generating sequence which is the basis of incremental
construction of a tree. At the second step, we run the following algorithm on the
random values generated at the first step. The process of constructing an evolution-
ary tree for n cells/leaves based on the Beta-splitting model with the parameters

(, 8) combining these two steps is described in the following pseudocode.

Algorithm 1 Algorithm for constructing a tree .7 with n leaves with the Beta param-
eters v and f3.

1: function BuildBetaSplittingTree(n, a, §)
2 Create the root of T

3 T .root.label < (0,1)

4 fori=1---ndo

5: Sample b; ~ B(a+ 1,8+ 1)

6: Sample u; ~ U(0,1)

7 for each leaf € 7 .leaves do

8 (z,y) < leaf.label

9 if u; € [z,y] then

10: I < Create the left child of leaf
11: r <— Create the right child of lea f
12: r.label + (z + (y — 2)b;,y)

13: llabel < (z,z + (y — z)b;)

14: leaf.label + i

15: end if

16: end for

17: end for

18: return
19: end function
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Software availability

The simulator has been implemented in Python and is freely available at https:
//github.com/compbiofan/SingleCell CNABenchmark.git, which also includes the
scripts for regenerating the comparison results for both simulated and real datasets.

Availability of data and materials
The new version of HMMcopy was downloaded from https://github.com/shahcompbio/
single_cell_pipeline/tree /master/single_cell /workflows/hmmcopy. The scripts to
preprocess files for HMMcopy were downloaded from https://shahlab.ca/projects/
hmmcopy _utils/. We use hg19 for all experiments in this manuscript and the mappa-
bility file used by HMMcopy was downloaded from http://genome.ucsc.edu/cgi-bin/
hgFileUi?db=hgl9&g=wgEncodeMapability. CopyNumber was downloaded from
https://bioconductor.org/packages/release/bioc/html/copynumber.html. Ginkgo’s
command line version which was used in this manuscript was downloaded from
https://github.com/robertaboukhalil /ginkgo.

The real biological dataset that we analyzed is available from NCBI Sequence
Read Archive under accession SRP114962.
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Glossary
e Segmentation Computationally segmenting the genome into non-overlapping regions so that each region
has a homogeneous copy number.
e Boundary and Breakpoint Positions on the genome where segmentation occurs.
o Absolute Copy Number The integer value representing the number of copies of a region on the genome.
e Ploidy The average copy number across the genome.
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Figures

Figure 1 ROC curves of the three methods HMMcopy, Ginkgo, and
CopyNumber. (a) Coarse-grained analysis results, and (b) fine-grained results. For each
method, the results based on three thresholds of correctness are plotted. For HMMcopy,
nu, which controls the suggested degree of freedom between states, was tuned to take on
the values 0.01 (rightmost), 0.1, 2.1 (the tool's default), 4, 10, and 20 (leftmost). For
Ginkgo, alpha, which controls the significance level to accept a change point, was tuned
to take on the values 1e-1000 (rightmost), 1e-100, le-10, 1le-5, le-4, le-3, le-2 (the
tool’s default), 0.02, and 0.05 (leftmost). The dots corresponding to values 1le-5 and
le-10 in coarse-grained analysis overlap. For CopyNumber, gamma, which is the weight
of the penalty on changing a state, was tuned to take on the values 40 (rightmost, and
the tool's default), 10, 5, 4, 3, 2, and 1 (leftmost).

Figure 2 Computational requirements of Ginkgo, HMMCcopy, and
CopyNumber. Results are for analyzing a 1000-cell dataset on Intel(R) Xeon(R) CPU
E5-2650 v2 whose clock speed is 2.60GHz. Left and right panels correspond to running
time (in log10 of seconds) and memory consumption (in logl0 of kb). The running time
and memory were recorded for using different parameters as described in Fig. 1. As
Ginkgo's running time increases more than twofold for « = 0.05, we treated it as an
outlier and did not include this running time point in this plot.

Figure 3 Recall and Precision of Ginkgo, HMMcopy, and CopyNumber as
functions of the ploidy. The ploidy level is varied and the results are based on the (a)
coarse-grained and (b) fine-grained analyses. The ploidies of the simulated data were 1.5,
2.1, 3.0, 3.8, and 5.3.
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Figure 4 Recall and Precision of Ginkgo, HMMcopy, and CopyNumber as
functions of the coverage. The coverage is varied and the results are based on the (a)
coarse-grained and (b) fine-grained analyses. The coverages are varied to mimic those
produced by MALBAC, DOP-PCR, TnBC and Bulk sequencing.

Figure 5 Comparison of HMMcopy, Ginkgo and CopyNumber on Sample
102 in [43]. (a) Venn diagram of the breakpoints from Ginkgo, HMMcopy and
CopyNumber. Breakpoints from two methods are counted as overlapping if they are
within 400,000bp of each other. (b) Distribution of the copy number changes (under a
parsimony analysis) per bin based on the copy number profiles obtained by HMMcopy for
the seven samples. (c) Distribution of the copy number changes (under a parsimony
analysis) per bin based on the copy number profiles obtained by Ginkgo for the seven
samples. For (b) and (c), a maximum parsimony tree was inferred from the copy number
profiles of the cells, and the minimum number of copy number changes per bin along all
the branches of the tree was computed by parsimony analysis. The percentages of the bins
with each number of copy number changes are plotted.

Additional Files
Additional file 1 — Supplementary Material

This file contains supplementary figures and their legends.
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