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Abstract. As part of the 4th annual Smoky Mountains Data Chal-
lenge hosted by Oak Ridge National Laboratory, we sought to quantify
uncertainty in subsurface exploration of the underground to facilitate
decision-making. To provide some context, in the collection of seismic
data, sounds waves are transmitted into the ground and their reflections
recorded by a receiver. However, due to inconsistencies of the subsurface
medium, accurate localization of underground layers is difficult without
directly digging down to confirm. To combat this issue, we used several
statistical and computer vision to quantify uncertainty of seismic data
images by labelling each pixel of a seismic survey (realistic models of
subsurface density) to indicate its volatility. After thorough analysis, we
could conclude that not one “good” metric exists to accomplish our de-
fined goal; uncertainty is defined differently depending on the specific
methods one employs. Every uncertainty map that was generated us-
ing a unique technique highlighted distinct areas of the seismic surveys.
More experimentation and feedback from experts are needed to iden-
tify what optimal combination of these (or other) techniques would be
best to arrive at the best measurement by which to measure subsurface
uncertainty.

1 Background

In the energy industry, it is important to have a solid understanding of sub-
surface characteristics in order to discover untapped natural resources. Before
drilling down to acquire these resources, engineers will conduct a thorough seis-
mic analysis of the area to determine whether it is worth the risk to do so. The
process of generating an understanding of the unknown subsurface structures
includes the following;:

1. Seismic data collection/surveying

2. Seismic data pre-processing

3. Seismic migration & velocity model construction
4. Seismic interpretation

Seismic surveys are typically conducted using powerful sound waves being
emitted deep into the earth. These sound waves bounce off boundaries between
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subsurface layers and are recorded at the surface. During this collection of seismic
data, one or more sources of sound energy transmit waves while one or more
receivers record the reflections of these waves. The locations of these layers can
be identified knowing the source location, receiver location, and measurement of
how much time has elapsed between the transmission and reception of the signal.
Ideally, one can label subsurface boundary layers based on peaks found in the
seismic trace (amplitude over time of the signal received). However, noise can
often distort the signal, making peaks much more difficult to identify, so signal-
processing techniques are employed to denoise the signal as much as possible.

To evaluate every seismic trace, offset pair gathers are used to reduce the
uncertainty. Offset pair gathers are produced by many pairs of sources and re-
ceivers that record reflections off the same reflector in the given subsurface. This
redundancy helps validate the accuracy of a velocity model. These many pairs
collect depth estimates for reflectors and plot them so that depth is depicted on
the y-axis and offset pairs along the x-axis. Gathers with mostly horizontal lines
indicate an accurate velocity model.

In this paper, we analyze subsurface densities and incorporate different meth-
ods to quantify and visualize areas of uncertainty. Given how difficult it can be to
identify points of uncertainty as there is no certain way to verify our results, we
employed a variety of many different statistical and imaging methods to arrive
at our most confident conclusion.

2 Related Work

In determining what methods to use for quantifying and visualizing uncertainty,
we drew ideas from medical imaging and image comparison measurements. The
Kullback-Leibler Divergence approach was inspired by [1], which explains the
uses of K-L Divergence in determining uncertainty within medical images.

Another metric we used, Structural Similarity Index [3], is a common image
comparison method that compares the similarity between two entities. SSIM uses
luminance, contrast, and structure to check image quality, returning a number
between -1 to 1 (complete opposite to exact replica, respectively).

As for the use of canny filters [2], academic papers on computer vision pro-
vided insight into how we could use edge detection techniques to focus on hori-
zontal striping present in gathers. The use of this popular edge detection tech-
nique primarily comes from image processing in the field of artificial intelligence.

3 Contributions

In this paper, we showcase various statistical and computer vision techniques uti-
lized for analyzing subsurface characteristics and the uncertainty around them.
We developed a set of metrics that seek to identify exactly where uncertainty
is present and then techniques for visually presenting those metrics overlaid on
raw data. Specifically, we delve into seismic uncertainty, seeking to further un-
derstand subsurface characteristics.
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In particular, we evaluated the following methods/metrics for quantifying
uncertainty in seismic realizations:

1. Standard Deviation, a common method to determine a metric of uncertainty

2. K-L Divergence, a metric to quantify the statistical distance difference be-
tween an actual and observed probability distribution

3. Structural Similarity Index, an image comparison technique to determine
the similarities and differences between partitions of the realizations

4. Canny Filtering, an edge detection operator used to detect edges in images
based on the intensity of the gradients

All code developed as part of this project is made available open source on
Github at https://github.com/agrippa/geo-owl-ogy.

4 Methods

In this section, we expand on the dataset and algorithms used in this work.

1 2 3 K-L Divergence/ 4

Load Data Canny Filtering SSIM/ Visualize on Realizations
Standard Deviation

Fig. 1: Workflow schematic of project

4.1 Dataset

There were two datasets available for this project: one small dataset (3GB) and
one large dataset (49GB). The small dataset is a subset of the files contained
in the large dataset. The datasets consist of a set of models of the subsurface
density (called density models, realizations, or stacks). For every realization, the
plausible density at a given point is generated based on the full seismic survey.

These 2-D realizations were randomly generated and based on a single known
ground truth, and can be used to visualize the structures in the subsurface. These
realizations are commonly loaded into a 2-D Numpy array (depth (z) dimension
of 400 and a horizontal (x) dimension of 1058, with x as your leading dimension
and z as your innermost dimension. Figure 2 shows an example of what a stack
looks like when visualized in Python.

For each realization, the dataset also includes a file of gathers produced
using the same velocity model. A gather is basically an estimate of the density
at a given point for a source-receiver pair in the seismic survey. Every single
realization is mapped to one of these offset pair gather files, and each file is
conveyed in 3-D form as a Numpy array with 39 offset pairs in the survey. The
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x and z dimensions are the same as the realizations, with an added y-dimension
indicating the offset pair. These gathers basically store values measured at the
same physical coordinate in the subsurface using different sources and receivers
during a seismic survey. Figure 3 shows an example of what several gathers look
like when visualized.

All of these files were stored in industry-standard SEGY format, and a
Python module was used to load and visualize them.

Fig. 2: 2-D realization of subsurface

4.2 Standard Deviation

The goal of our Standard Deviation method was to take the standard deviation
across all realizations for each pixel, and use that as a simple uncertainty metric.

First, the standard deviations were calculated through collecting every pixels’
values from every realization in the small data set, storing these values in a 1058
x 400 (dimensions of each realization) x number of realizations matrix. The
first iteration over the realizations was to collect the means for each pixel; the
second iteration was to apply the standard deviation formula.

After the computation, the standard deviations were visualized across every
pixel to see where the points of high variation existed on a sample realization.
The points of high standard deviation were displayed as varying shades of red
on top of a random realization, where the darker shade represented more uncer-
tainty. This method was conducted on the large data set and the canny-filtered
realizations (later discussed).

4.3 Kullback-Leibler Divergence

We also explored the application of K-L Divergence (also called relative entropy)
across realizations to highlight areas of general uncertainty by computing the
distance between two probabilistic distributions.
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Fig. 3: 3-D gathers based on realization

For every pixel across all realizations, the set of possible values were first
binned into a frequency vector. Then a ”true” distribution was computed by
finding the most common binned value among the realizations; it was then con-
verted into a probability vector by giving the most common bin a value of 1.0
and all others 0.0. The K-L score for each pixel was then computed by taking
the K-L divergence between this ”true” distribution and the observed distribu-
tion across realizations. We were then able to view an image of the K-L scores
superimposed on a sample realization.

To offer some intuition in to this approach, what we are essentially doing
is finding the distance between the observed distribution of values and a ”true”
distribution of values, where the ”true” distribution assumes that the most com-
mon value bin is also the correct one. For pixels where the possible values are
focused in a single bin, the K-L divergence between our fake "true” distribution
and the observed distribution will be small. For pixels where there is a wide
range of possible pixel values/bins, the K-L divergence will be high because no
one bin will be much more frequent than the others.

4.4 Structural Similarity

The goal of this method was to calculate the structural similarity of a sliding
window across every pair of realizations.

At first, we used a sliding window in which there were no overlap, across all
pairs. However, this resulted in blocky visuals, not accurately showing the SSTM
values at a fine granularity as large blocks of pixels were being assigned a single
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Fig. 4: K-L Divergence Formula (discrete probability distributions P and Q)

value (see Figure 6). Thus, we tweaked our approach to instead use overlapping
windows to gather more fine grain information and more accurately assign pixels
an SSIM value.

When using overlapping windows, we ran into performance issues with a
step size of 1. As a result, we decided to reduce the time by a factor of 16 by
making the horizontal and vertical step size 4, trading off granularity for speed.
With every iteration of the sliding window, we calculated the SSIM value of the
window between the two files and added each of those values to its respective
pixel. Finally, we took the mean of every pixel’s SSIM across all realizations
and plotted the result. Due to the nature of overlapping, the corners and edges
receive less coverage than elements towards the middle of a realization.

(2t tty + €1) (204 - 2)
(nE + p + e )(o% + o + )

SSIM(z, y) =

Fig. 5: Formula for Structural Similarity across windows z and y

4.5 Canny Filtering/Gather Image Quality

The techniques previously described have focused entirely on the stacks/realizations
available in this dataset. However, an entirely separate collection of data is also
available to us in the gathers of the dataset. These gathers break down the mea-
sured values at each physical coordinate by source-receiver pairs, and so they
can offer more fine grain information. From the challenge problem description,
we know that ”in a gather of an accurate velocity model, geophysicists expect
to mostly see horizontal lines, indicating that the depth estimate for a layer
is the same across all offset pairs” [4]. Therefore, we explored techniques for
finding high quality velocity models by finding horizontal lines in gathers. This
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Fig.6: Areas where mean SSIM values < 0.6 on a sample realization (deeper red,
lower SSIM value). Block-like visuals are evident.

can enable us to then focus our techniques on only realizations that are most
realistic.

The Canny Filtering method proved to be especially useful. After normalizing
the gathers’ data from the small data set to ensure good illumination, Canny
Filter was applied to the images. A Canny Filter is an edge detection operator
used to detect edges in images based on the intensity of their gradients

With the application of the Canny Filter, the Gaussian-smoothed gather
images were reduced to just a few white lines edges highlighting the most obvious
edges. The smoothing threshold was set for the purpose of noise reduction and
to showcase just the most prominent edges. Figure 7 shows an example of what
a gather looks like after applying a Canny Filter.

We could then narrow down the number of ”good” realizations based on
the horizontal consistency of the gathers after applying the Canny Filter. To do
this, the 2-norm (Frobenius norm) was calculated between neighboring columns
of each gather and summed up. By this metric, a gather containing the greatest
number of similar columns of pixels would be given the lowest scores and qualify
as a "good” gather.

The Structural Similarity and K-L Divergence techniques mentioned in the
previous sections were then re-applied to a tuned dataset consisting of only
7good” realizations.

5 Results

5.1 Standard Deviation

Figure 8 shows a sample result from our Standard Deviation method, applied
to the large dataset for this challenge problem. In this visualization, overlay
red on top of pixels whose standard deviation exceeds a certain threshold (2.0).
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Fig. 7: Example gathers after applying Canny Filters

Deeper reds indicate higher standard deviations, lighter/brighter reds indicate
lower standard deviations. In general, this method appears to be highlighting
areas where the layers in the subsurface are more angled — or very deep portions
of the volume.

5.2 K-L Divergence

Figure 9 shows a sample output of our K-L Divergence method applied to the
small dataset. It is clear that the uncertainties picked up by this method differ
from those highlighted by the standard deviation metric. K-L appears to be
picking up on more fine grain uncertainties around the edges of layers in the
subsurface as they shift around under different velocity models.

5.3 Structural Similarity

Figure 10 shows a sample output of the Structural Similarity method. In these
images the brighter the red, the higher the mean SSIM values while not crossing
above a given threshold (0.6). The deeper the red, the lower the mean SSIM
value and therefore the more uncertainty. Again, we find this method seems to
be highlighting a different area of uncertainty than the previous two methods —
particularly focusing on the deeper regions of the volume.
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Fig. 8: Areas where standard deviation > 2.0 overlaid on a sample realization.

Fig.9: Superimposed image of the good realizations (small data set) after being
processed using K-L Divergence

5.4 Canny-Filtered Dataset

Finally, we also consider how using a filtered and tuned dataset with the three
above methods (Standard Deviation, K-L, SSIM) changes the outputs generated
by those respective methods on the challenge’s small dataset.

Figure 11 shows the distribution of quality scores across the small data com-
puted using the Canny method applied to gathers files. Based on this distri-
bution, we labeled all realizations/gathers in the small dataset with a score j=
286,000 as ”"good”. This reduced the size of our dataset from 59 realizations to
29 realizations. Figures 7 shows an example of a quick spot check to validate that
the scores match our intuition about what a ”good” and ”bad” gather looks like.

Figures 13, 14, and 15 show the outputs of our Standard Deviation, K-L
Divergence, and SSIM methods applied to the high quality dataset, respectively.
We can see that the trimmed dataset has a major impact on the output of the
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Fig. 10: Areas where mean SSIM values < 0.6 on a sample realization
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Fig. 11: Histogram visualizing the distributions of realization scores (small
dataset) based on gather distances

Standard Deviation and SSIM methods, but don’t observe much change in the
K-L Divergence output.
The Standard Deviation metric is now highlighting less of the image, sug-
gesting that uncertainty has been reduced by focusing on ”good” realizations.
The SSIM metric now appears to be mostly highlighting uncertainty in the
left side of the volume — the region of highest uncertainty appears to have shifted.
At the moment, we do not have an explanation for this change.

6 Discussion & Conclusions

Based on the visualizations delivered by each strategy, each technique seems to be
highlighting the image in different ways. Standard deviation indicates broader
strokes of uncertainty by coloring in whole regions of the image, while K-L
divergence focuses on outlining horizons where the distribution is showing high
uncertainty. Meanwhile, the SSIM approach is similar to Standard Deviation in
that it is highlighting broad strokes of the image but seems to be focusing on a
different region.
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Fig. 12: Example of two gathers with a good and poor quality score, respectively

Fig. 13: Areas where standard deviation > 2.0 on a sample realization

When focusing on the realizations that were deemed to be ”good” by our sim-
ple distance metric, we saw that Standard Deviation and SSIM were significantly
impacted in their outputs. In general, both seemed to demonstrate lower uncer-
tainties. In the case of Standard Deviation, the same regions are highlighted but
to a lesser extent. In the case of SSIM, its focus seems to have shifted entirely.

Given these results, it is difficult to objectively say that a single metric stands
out above the rest to serve as basis for correctly quantifying the uncertainty
into a certain area. Since the data is sparse on how accurate density models
have been in identifying desirable subsurface characteristics, in addition to not
having a ground truth, it is difficult to select a clear winner. Instead, it is likely
some combination of these techniques (and potentially other unexplored ones)
would be the best option as each is able to highlight different types or regions
of uncertainty that might be interesting to seismic interpreters.
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Fig. 14: Superimposed image of all realizations (small data set) after being pro-
cessed using K-L Divergence
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Fig. 15: Areas where mean SSIM values < 0.6 on a sample realization
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